Three-dimensional seismic response analysis of a concrete-faced rockfill dam on overburden layers

2010 ◽  
Vol 4 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Dakuo Feng ◽  
Ga Zhang ◽  
Jianmin Zhang
2017 ◽  
Vol 14 (12) ◽  
pp. 6003-6013 ◽  
Author(s):  
Ameen Mohammed Salih Ameen ◽  
Zainah Ibrahim ◽  
Faridah Othman

2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


Author(s):  
Tsuyoshi Fukasawa ◽  
Shigeki Okamura ◽  
Takahiro Somaki ◽  
Takayuki Miyagawa ◽  
Masato Uchita ◽  
...  

This paper describes that the analytical model for the three-dimensional isolation system [1], which consists of thick rubber bearings, disc springs and oil dampers, is created through loading tests. The new-type analytical models of each element are proposed to improve the prediction accuracy of the seismic response analysis. The concept of the three-dimensional isolation system has been proposed to ensure the structural integrity for large reactor vessels. The primary specifications of the three-dimensional isolation system are a horizontal natural period of 3.4 s and a vertical natural period of 0.33 s. The investigations of horizontal isolation performances have been conducted for the various types of isolation devices, beginning with rubber bearings, whereas the previous studies focused on the vertical isolation performances are only a few. Hence, isolation characteristics, such as restoring force and damping force, should be clarified by loading tests using vertical seismic isolation elements, and analytical model to assess the seismic response should be identified on the basis of the loading test results. This paper presents a new analytical model with providing of the differential equations to improve the prediction accuracy and demonstrates the seismic performance, including beyond-design-basis ground motion, for the three-dimensional isolation system by the seismic response analysis.


Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Norihiro Nakajima

Research and development of three-dimensional vibration simulation technologies for nuclear facilities is one mission of the Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (JAEA). A seismic intensity of upper 5 was observed in the area of High-Temperature Engineering Test Reactor (HTTR) at the Oarai Research and Development Center of JAEA during the 2011 Tohoku earthquake. In this paper, we report a seismic response analysis of this earthquake using three-dimensional models of the HTTR building. We performed a parametric study by using uncertainty parameters. Furthermore, we examined the variation in the response result for the uncertainty parameters to create a valid 3D finite element model.


Sign in / Sign up

Export Citation Format

Share Document