Influence of site conditions on seismic design parameters for foundations as determined via nonlinear site response analysis

Author(s):  
Muhammad Tariq A. Chaudhary
2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Juan Tarazona ◽  
Zenón Aguilar ◽  
Jose Barrantes ◽  
Luis Vergaray

The site response analyzes provide an idea of the behavior of the soil against strong ground motions, involving a large number of variables that determine the non-linear behavior of the soil. Due to the complexity of these analyzes, in practice the effects of nonlinear soil behavior are incorporated factors that modify the seismic response of a response spectrum in rock (linear behavior). In this study, nonlinear site response analysis has been performed for 50 soil profiles in an attempt for covering a wide range of shear wave velocity profiles using the software DEEPSOIL V.7. For this purpose, 06 seismic records have been spectrally adjusted to uniform hazard spectrum of 475, 1000 and 2475 years of return period. Subsequently, a comparison of the results obtained from the site response analysis with the parameters stipulated in the Peruvian Seismic Design Code E.030 (2018) was made, in order to determine the likelihood of these for the construction of design spectra. Discrepancies in the ranges of Vs values that this standard considers for the classification of soils and the factors that determine the width of the plate of the design spectrum have been found.


2011 ◽  
Vol 255-260 ◽  
pp. 2365-2369
Author(s):  
Emad Gheibi ◽  
Mohammad Hosein Bagheripour

The concept of equivalent number of uniform stress cycles, is essential for assessment of soil liquefaction potential. In this regard, various procedures are used to convert random acceleration time history to uniform cycles having amplitude of 0.65 of peak acceleration. Equivalent number of cycles (Neq) defines equivalent energy generated by harmonic loading as that imposed by irregular motion during an earthquake. Neq is assumed to be a function of earthquake magnitude. Over the past years, in accordance with development in methods of soil liquefaction evaluation, various methods have been proposed to determinate equivalent number of cycles. In particular, parameters like site to source distance (r), have been related directly to Neq. In this study, more than 80 earthquake records have been investigated and their Neqs are assessed using energy approach and nonlinear site response analysis. It is shown that equivalent number of cycles is related to earthquake magnitude (M), r and depth of originated signals. Unlike previous methods which result in scatter in output data, current approach has led to more uniform and consistent results for each earthquake.


Author(s):  
Julie Régnier ◽  
Luis‐Fabian Bonilla ◽  
Pierre‐Yves Bard ◽  
Etienne Bertrand ◽  
Fabrice Hollender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document