site response analysis
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 63)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
pp. 875529302110566
Author(s):  
Christopher A de la Torre ◽  
Brendon A Bradley ◽  
Christopher R McGann

This study describes an approach for modeling wave scattering and the spatial variability of ground motion in geotechnical site-response analysis by modeling soil heterogeneity through 2D correlated random fields. Importantly, the required site-specific inputs to apply the proposed approach in a practical setting are the same as those associated with conventional 1D site-response analysis. The results, which are affected by wave scattering attenuation, are compared to those from conventional laterally homogeneous 1D site-response analyses and 1D analyses with randomized velocity profiles extracted from heterogeneous 2D velocity model realizations. A sensitivity study, involving 5400 2D model realizations, investigates the influence of random field input parameters on wave scattering and site response. The computed ground surface acceleration waveforms and transfer functions show that this method is capable of scattering seismic waves. Multiple ground-motion intensity measures are analyzed to quantify this influence and distinguish between the effects of 1D vertical heterogeneities and averaging across many nodes and realizations, from the effects of wave scattering and 2D ground-motion phenomena. The redistribution of ground-motion energy across wider frequency bands and scattering attenuation of high-frequency waves in the 2D analyses resemble features observed in empirical transfer functions computed in other studies. While analyses with 1D randomized velocity profiles are able to replicate median results from 2D analyses for some low-frequency intensity measures (e.g. transfer functions at [Formula: see text] Hz, and spectral acceleration at the fundamental period), medians and standard deviations of high-frequency intensity measures (e.g. transfer function at [Formula: see text] Hz, [Formula: see text], and Arias intensity), which are influenced by wave scattering, are not appropriately captured. Given the equivalent input information requirements as conventional 1D analysis, and the availability of large computational resources, we advocate that the proposed 2D (and eventually 3D) approach is a fruitful path forward to improve the modeling of site-response physics and realize improved predictive capabilities.


Author(s):  
Tessa Williams ◽  
Norman Abrahamson

ABSTRACT The traditional approach used to incorporate site response into the ground-motion hazard analysis is to compute a design spectrum for a rock-site condition and then propagate the rock motion from the base of the soil model to the surface. The main limitation with this approach is that it can be inconsistent with the ground-motion models (GMMs) used to develop the input rock motion. The VS profile implicit in the GMMs is unlikely to match the site-specific VS profile (value and gradient), because the GMMs were developed for ground motions from different VS profiles over large regions and are unlikely to match the profile of any one site well. This article presents the VS profile correction method for developing surface ground motions as an alternative to the soil-over-rock approach routinely used in earthquake engineering practice. This approach is similar to the standard soil-over-rock analysis, but uses different input motions and involves performing two site response analyses—one for the generic profile associated with the GMM(s) and one for the site-specific profile—then applying the ratio of the two site response analysis results to correct the design spectrum for the reference site condition developed using the GMMs. Two example applications are included to illustrate the VS profile correction methodology as well as some of the challenges that may arise when doing so.


2021 ◽  
Vol 44 (2) ◽  
pp. 1-13
Author(s):  
Abdul L. Helaly ◽  
Mehedi A. Ansary

Microtremor Horizontal to Vertical spectral ratio technique, also known as the Nakamura’s method is growing in status for site response analysis. 500 locations in RAJUK area (1530 km2) have been selected for microtremor observations. Microtremor data have been compiled and studied to estimate the predominant resonance frequency and H/V peak amplitude following the SESAME (2004) guideline. Finally, seismic vulnerability index of site soil using Nakamura’s technique has been determined from predominant resonance frequency and H/V peak amplitude parameter. The calculated seismic vulnerability index for the studied 500 locations varies between 0.16 and 7.28. The low seismic vulnerability index (Kg) value means that the areas are relatively stiff and underlain by substantial deposit of sediments. The relatively higher Kg values are spread in the soft alluvial deposit areas. The areas with high Kg values are considered as fragile zones that may initiate significant damage to infrastructure situated in those areas during an earthquake.


Sign in / Sign up

Export Citation Format

Share Document