Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads

Author(s):  
Meng Zhou ◽  
Jiaji Wang ◽  
Jianguo Nie ◽  
Qingrui Yue
2011 ◽  
Vol 121-126 ◽  
pp. 3025-3029
Author(s):  
Hui Li ◽  
Jun Deng ◽  
Jun Hong Lin

Since the expansion of the cement during curing was constraint by the steel tube, the concrete core in the self-stressing concrete-filled steel tubes (SSCFST) is under tri-axially compression before applying load, which increases the axial capacity of the SSCFST. In addition, Carbon fiber reinforced polymer (CFRP) wrapping can avoid bucking of the steel tube, increase the axial capacity and improve the durability of SSCFST. This study presents a theoretical study on axial capacity of the SSCFST wrapped with CFRP sheets. Several basic assumptions are proposed. The ultimate equilibrium method was employed to analyze the axial capacity, of which two limit states, including steel tube bucking and CFRP sheets rupturing were considered. The analytical results from an example show that the initial self-stress improves axial capacity of the SSCFST by about 30% and the CFRP reinforcement improves axial capacity by about 15%.


2010 ◽  
Vol 66 (1) ◽  
pp. 111-124 ◽  
Author(s):  
T. Aly ◽  
P. Thayalan ◽  
M. Elchalakani ◽  
I. Patnaikuni

2021 ◽  
Vol 182 ◽  
pp. 106653
Author(s):  
Da-wei Zhang ◽  
Yu Zeng ◽  
Ju Chen ◽  
Fuyuan Gong ◽  
Cheng-bin Liu

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 723-730
Author(s):  
Milad Soltanalipour ◽  
Miquel Ferrer ◽  
Albert Albareda ◽  
Frederic Marimon ◽  
Miquel Casafont ◽  
...  

2013 ◽  
Vol 790 ◽  
pp. 181-184
Author(s):  
Hai Lun Tong ◽  
Tian Hong Wang ◽  
Jian Qi Lu ◽  
Xin Tang Wang

The post-fire axial compressive behavior of a set of steel fiber reinforced ceramsite concrete filled steel tubular short columns (noted as SFCC-SSC) was experimentally studied. Effect of the maximum value of fire response temperatures of the specimens and some parameters on the axial compression performance of the specimens was especially discussed. The results show that the surface of the steel tubes after fire presented dark red for 700°Cof furnace temperature and orange red for 900°C, and there was no obvious descending segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the axial bearing capacity of the specimens aftersuffering the furnace temperature of 900°C is much less than that of the specimens not subjected to fire load, and the volume of steel fiber of 0.5% of has the greatest effect on post-fire bearing capacity of specimens of SFCC-SSC.


Sign in / Sign up

Export Citation Format

Share Document