Comparative seismic design optimization of spatial steel dome structures through three recent metaheuristic algorithms

Author(s):  
Serdar Carbas ◽  
Musa Artar
2008 ◽  
Vol 198 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Nikos D. Lagaros ◽  
Anargyri Th. Garavelas ◽  
Manolis Papadrakakis

2016 ◽  
Vol 170 ◽  
pp. 49-61 ◽  
Author(s):  
Georgios S. Papavasileiou ◽  
Dimos C. Charmpis

2007 ◽  
Vol 34 (7) ◽  
pp. 856-869 ◽  
Author(s):  
Hong Liang ◽  
Terje Haukaas ◽  
Johannes O Royset

This paper describes a functional tool for engineers to make rational design decisions by balancing cost and safety. Focus is on seismic design, in which nonlinear structural response must be considered. For this purpose, we implement and apply a state-of-the-art algorithm for reliability-based design optimization. The work extends the OpenSees software, which is rapidly gaining users in the earthquake engineering community. Consequently, design optimization with sophisticated nonlinear finite element models of real structures is possible. An object-oriented software architecture is employed that focuses on maintainability and extensibility of the software. This approach also offers flexibility in the choice of optimization and reliability methods for each specific problem, supported by the decoupled nature of the optimization algorithm. Our work utilizes and extends the existing tools for structural reliability analysis in OpenSees. In particular, we employ response sensitivities that are computed within the finite element code by direct differentiation. The implementation is tested through case studies with nonlinear structural response. Discontinuous response gradients are overcome by use of fibre cross sections and smoothed material models. The numerical examples include the seismic design optimization of a six-storey, three-bay, reinforced concrete building. Key words: reliability-based design optimization, nonlinear finite elements, earthquake engineering, object-oriented software development, OpenSees.


Author(s):  
Ali Kaveh ◽  
Mohamad Farhadmanesh

In this paper three well-known metaheuristic algorithms comprising of Colliding Bodies Optimization, Enhanced Colliding Bodies Optimization, and Particle Swarm Optimization are employed for size and performance optimization of steel plate shear wall systems. Low seismic and high seismic optimal designs of these systems are performed according to the provisions of AISC 360 and AISC 341. In one part of the low seismic example, a moment frame and Steel Plate Shear Wall (SPW) strength are compared. Performance optimization of the Special Plate Shear Wall (SPSW) for size optimized system is one of the objectives of the high seismic example. Finally, base shear sensitivity analysis on optimal high seismic design of SPSW and size optimization of a 6-story to a 12-story SPSW are performed to have a comprehensive view on the optimal design of steel plate shear walls.


Sign in / Sign up

Export Citation Format

Share Document