Structural Seismic Design Optimization and Earthquake Engineering

2007 ◽  
Vol 34 (7) ◽  
pp. 856-869 ◽  
Author(s):  
Hong Liang ◽  
Terje Haukaas ◽  
Johannes O Royset

This paper describes a functional tool for engineers to make rational design decisions by balancing cost and safety. Focus is on seismic design, in which nonlinear structural response must be considered. For this purpose, we implement and apply a state-of-the-art algorithm for reliability-based design optimization. The work extends the OpenSees software, which is rapidly gaining users in the earthquake engineering community. Consequently, design optimization with sophisticated nonlinear finite element models of real structures is possible. An object-oriented software architecture is employed that focuses on maintainability and extensibility of the software. This approach also offers flexibility in the choice of optimization and reliability methods for each specific problem, supported by the decoupled nature of the optimization algorithm. Our work utilizes and extends the existing tools for structural reliability analysis in OpenSees. In particular, we employ response sensitivities that are computed within the finite element code by direct differentiation. The implementation is tested through case studies with nonlinear structural response. Discontinuous response gradients are overcome by use of fibre cross sections and smoothed material models. The numerical examples include the seismic design optimization of a six-storey, three-bay, reinforced concrete building. Key words: reliability-based design optimization, nonlinear finite elements, earthquake engineering, object-oriented software development, OpenSees.


2008 ◽  
Vol 198 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Nikos D. Lagaros ◽  
Anargyri Th. Garavelas ◽  
Manolis Papadrakakis

Author(s):  
Dmitry M. Zhemchugov-Gitman ◽  
Lyubov V. Mozzhukhina ◽  
Alexander M. Uzdin

The question of setting the seismic design input on high rise buildings is considered. The existing approaches to accounting for increased responsibility of high rise buildings in Russia are described. The proposal to reduce the probability of an acceptable building failure in proportion to the number of floors and Guideline proposals to increase the reliability factor and using maps of general seismic zoning are analyzed. The main disadvantages of methods described are indicated. It is shown that the current regulatory documents in the field of earthquake engineering do not provide the same reliability of designed structures in general and high-rise buildings in particular. The influence of seismic dangers in according with seismic zoning maps on the reliability of the designed objects is noted. An approach to generating the design input based on the permissible probability of its exceeding is considered using the example of five five-storey buildings and one 25-storey buildings. The probability of the admissible damage value included in the normative calculations is estimated. An estimate of the allowable failure probability on the value of acceptable damage (risk) is proposed under the assumption of a normal distribution of damage caused by earthquake. It is shown that the allowable failure probability decreases with decreasing acceptable damage only in the area of small damages. An approach to the assignment of seismic action based on an assessment of seismic risk has been formulated. The system of design coefficients used to calculate seismic loads on high-rise buildings is analyzed. It is noted that along with an increase in the design level of seismic acceleration, it is necessary to increase the coefficient, taking into account the low damping of high-rise buildings oscillations. At the same time, it is possible to significantly reduce the reduction coefficient by regulating the strains between the building floors.


1998 ◽  
Vol 14 (4) ◽  
pp. 651-657
Author(s):  
Thomas Paulay

Philosophical concepts, biased toward structural design in seismic regions, are offered. Certain misconceptions in the aims, planning and execution of structural design are sketched. Apparent diverging professional interests, motivating on the one hand young academics dedicated to pursuing challenges in research, and on the other hand those of experienced practitioners, are contrasted. A plea is made to use in seismic design rationality and simplicity in application. The primary aim in the art of structural design should be to impart to the system specific properties that will make the seismic response of our buildings extremely tolerant with respect to earthquake-induced demands, which presently we can predict only with considerable crudeness. A postulated rational and deterministic, yet simple, design strategy should be implemented with equal dedication to high-quality construction. This part of the creative effort is likely to result in properties of the finished product, our buildings, which earthquakes will also recognize and respect. An appeal is made to all those committed to earthquake engineering to engage in active and generous support of technology transfer in an attempt to alleviate the overwhelming and immediate needs of societies in developing countries.


2016 ◽  
Vol 170 ◽  
pp. 49-61 ◽  
Author(s):  
Georgios S. Papavasileiou ◽  
Dimos C. Charmpis

2006 ◽  
Vol 1 (2) ◽  
pp. 189-189
Author(s):  
Kohei Suzuki ◽  

Dr. Heki Shibata, Professor Emeritus of the University of Tokyo, who authored this paper, is a pioneer in earthquake engineering in Japan and the leading expert in mechanical engineering and seismic design of involving pressure vessels and piping equipment of nuclear power plants and high-pressure gas plants. In this paper, he classifies and analyzes mode failures and failure mechanisms in a variety of equipment based on his experience in surveying the damage to industrial facilities caused by the 1964 Niigata Earthquake and the 1971 San Fernando Earthquake. He proposes introducing the "factor of importance" based on potential of danger in seismic design, developing basic seismic design calculating the maximum response of a structure using seismic coefficients including those defined using this factor of importance. This idea has been effectively implemented as the basis for seismic design of structures and equipment to this day, and its historical value has been proven. He points out the importance of the reliability of seismic design and the safe design of instrumentation and control in seismic design. Dr. Shibata emphasizes the importance of learning the lessons presented by the damage experienced in earthquakes, the 1995 Kobe Earthquake - yet another example of his invaluable foresight.


Author(s):  
Miguel Ormeño ◽  
Tam Larkin ◽  
Nawawi Chouw

Field evidence has established that strong earthquakes can cause severe damage or even collapse of liquid storage tanks. Many tanks worldwide are built near the coast on soft soils of marginal quality. Because of the difference in stiffness between the tank (rigid), foundation (rigid) and the soil (flexible), soil-foundation-structure interaction (SFSI) has an important effect on the seismic response, often causing an elongation of the period of the impulsive mode. This elongation is likely to produce a significant change in the seismic response of the tank and will affect the loading on the structure. An issue not well understood, in the case of unanchored tanks, is uplift of the tank base that usually occurs under anything more than moderate dynamic loading. This paper presents a comparison of the loads obtained using “Appendix E of API STANDARD 650” of the American Petroleum Institute and the “Seismic Design of Storage Tanks” produced by the New Zealand Society for Earthquake Engineering. The seismic response assessed using both codes is presented for a range of tanks incorporating a range of the most relevant parameters in design. The results obtained from the analyses showed that both standards provide similar base shear and overturning moment; however, the results given for the anchorage requirement and uplift are different.


2010 ◽  
Vol 163-167 ◽  
pp. 372-375
Author(s):  
Wen Da Wang ◽  
Xiu Li Xia ◽  
Yan Li Shi

The theory of performance-based seismic design (PBSD) is the key issue for the modern earthquake engineering research. With comparison of the traditional prescriptive seismic design code based on the bearing capacity design, the PBSD method presents the specific performance object for the buildings. On the base of the background and development of the PBSD about reinforced concrete (RC) structures, some researches and design approaches of PBSD were proposed for the concrete-filled steel tubular (CFST) structures based on the research results on PBSD of RC structures and the mechanical behavior of CFST structures. Some theory analysis was performed to investigate the PBSD performance of CFST structures. This is referred to further study on PBSD for CFST structures.


1995 ◽  
Vol 22 (2) ◽  
pp. 403-414 ◽  
Author(s):  
André Filiatrault ◽  
Chris K. A. Stieda

As part of the reconnaissance team of the Canadian Association for Earthquake Engineering (CAEE), the authors visited the epicentral region of the January 17, 1994, Northridge earthquake. This paper reviews the various potential weaknesses of some residential timber framed buildings. The damage observed during the Northridge earthquake as a result of these weaknesses is used to illustrate the need to introduce engineering concepts in the seismic design and retrofit of residential wood structures. Typical mitigation procedures to strengthen and increase the earthquake safety of wood buildings are discussed. Recognizing the close similarity between residential construction practice in Canada and the U.S., the information presented is topical for Canadian engineers, architects and owners. Key words: earthquake, seismic, timber, wood framed buildings.


Sign in / Sign up

Export Citation Format

Share Document