scholarly journals Correction to: Performance measurement for offline inspections under variable interactions and inspection errors in low-volume production

Author(s):  
Elisa Verna ◽  
Gianfranco Genta ◽  
Maurizio Galetto ◽  
Fiorenzo Franceschini
Author(s):  
Verna Elisa ◽  
Genta Gianfranco ◽  
Galetto Maurizio ◽  
Franceschini Fiorenzo

AbstractThe assessment of the performance of inspection strategies is a crucial element in the design phase of product quality inspections of manufacturing companies. The aspects that inspection designers need to consider include: (1) the typology of quality inspection, (2) the inspection variables involved, (3) the potential interaction between variables and (4) the presence of inspection errors. In particular, low-volume inspection design is critical due to the lack of historical data and the inadequacy of traditional statistical approaches. By considering these issues, this paper proposes a novel approach to support inspection designers in the prediction of offline quality inspection performance. The development of a probabilistic model based on the analysis of the possible variable interactions and inspection errors and the definition of some performance measures may successfully help designers in the early design stages of inspection process planning. The approach is supported by a practical application in the Additive Manufacturing field.


2015 ◽  
Vol 105 (03) ◽  
pp. 109-114
Author(s):  
U. Bracht ◽  
F. Arzberger ◽  
F. Schulenburg

Auch kleinere Unternehmen mit komplexen Herstellungsprozessen müssen heute in der Kleinserie die Effizienz und Geschwindigkeit in der Produktion erhöhen. Zentraler Bestandteil ist dabei eine schlanke Fertigungssteuerung in einem ganzheitlichen Produktionssystem. Der Fachbeitrag zeigt, wie auch bei hoher Komplexität wesentliche Ansätze der „Lean Production“ genutzt werden, um die Produktion von Ingenieurkeramiken durch die intelligente Vernetzung bereichsspezifischer Methoden zu optimieren.   Today, even small companies with complex manufacturing processes in low-volume production have to improve efficiency and speed in manufacturing. A core aspect is lean manufacturing control within an overall production system. This article shows how the main approaches of Lean Production can be applied even to a highly complex environment. The intelligent integration of specific methods for each control unit helps to enhance the production of ceramics.


2015 ◽  
Vol 791 ◽  
pp. 10-17
Author(s):  
Jacek Czajka ◽  
Mariusz Cholewa

This paper presents the concept of computer system’s module supporting production scheduling. Presented are algorithms, which realise the function and their operation is described. Based on those discussions was developed a prototype IT solution, which realises presented in this paper functions.


2020 ◽  
Vol 26 (6) ◽  
pp. 1145-1154 ◽  
Author(s):  
Paul Lynch ◽  
C.R. Hasbrouck ◽  
Joseph Wilck ◽  
Michael Kay ◽  
Guha Manogharan

Purpose This paper aims to investigate the current state, technological challenges, economic opportunities and future directions in the growing “indirect” hybrid manufacturing ecosystem, which integrates traditional metal casting with the production of tooling via additive manufacturing (AM) process including three-dimensional sand printing (3DSP) and printed wax patterns. Design/methodology/approach A survey was conducted among 100 participants from foundries and AM service providers across the USA to understand the current adoption of AM in metal casting as a function of engineering specifications, production demand, volume and cost metrics. In addition, current technological and logistical challenges that are encountered by the foundries are identified to gather insight into the future direction of this evolving supply chain. Findings One of the major findings from this study is that hard tooling costs (i.e. patterns/core boxes) are the greatest challenge in low volume production for foundries. Hence, AM and 3DSP offer the greatest cost-benefit for these low volume production runs as it does not require the need for hard tooling to produce much higher profit premium castings. It is evident that there are major opportunities for the casting supply chain to benefit from an advanced digital ecosystem that seamlessly integrates AM and 3DSP into foundry operations. The critical challenges for adoption of 3DSP in current foundry operations are categorized into as follows: capital cost of the equipment, which cannot be justified due to limited demand for 3DSP molds/cores by casting buyers, transportation of 3DSP molds and cores, access to 3DSP, limited knowledge of 3DSP, limitations in current design tools to integrate 3DSP design principles and long lead times to acquire 3DSP molds/cores. Practical implications Based on the findings of this study, indirect hybrid metal AM supply chains, i.e. 3DSP metal casting supply chains is proposed, as 3DSP replaces traditional mold-making in the sand casting process flow, no/limited additional costs and resources would be required for qualification and certification of the cast parts made from three-dimensional printed sand molds. Access to 3DSP resources can be addressed by establishing a robust 3DSP metal casting supply chain, which will also enable existing foundries to rapidly acquire new 3DSP-related knowledge. Originality/value This original survey from 100 small and medium enterprises including foundries and AM service providers suggests that establishing 3DSP hubs around original equipment manufacturers as a shared resource to produce molds and cores would be beneficial. This provides traditional foundries means to continue mass production of castings using existing hard tooling while integrating 3DSP for new complex low volume parts, replacement parts, legacy parts and prototyping.


2008 ◽  
Vol 43 ◽  
pp. 1-8 ◽  
Author(s):  
Dirk Becker ◽  
Marco Schikorra ◽  
A. Erman Tekkaya

Curved Profile Extrusion (CPE) is an extension of the common extrusion process and offers the possibility to manufacture three-dimensionally curved profiles. Due to the flexibility of the process different curvatures can be produced with the same setup, which makes this technique efficient especially for low volume production. The process is characterized by a controlled lateral deflection of the strand which influences the material flow in the die and causes the profile curvature. In this paper, a direct comparison of the power rating between warm bending and CPE is presented. Furthermore, the investigations concerning the choice of support strategy of the surmounting profile by a robot to increase the curvature accuracy are continued. Finally, some extensions of the equipment are explained to increase the level of process integration.


Sign in / Sign up

Export Citation Format

Share Document