Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants

Lipids ◽  
1997 ◽  
Vol 32 (8) ◽  
pp. 833-837 ◽  
Author(s):  
Rosario Álvarez-Ortega ◽  
Sara Cantisán ◽  
Enrique Martínez-Force ◽  
Rafael Garcés
2020 ◽  
Vol 11 (12) ◽  
pp. 2103-2121
Author(s):  
Carolina Vieira Viegas ◽  
Gisel Chenard Díaz ◽  
Yordanka Reyes Cruz ◽  
Leonardo Brantes Bacellar Mendes

Diabetes ◽  
1994 ◽  
Vol 43 (4) ◽  
pp. 540-545 ◽  
Author(s):  
J. W. Hunnicutt ◽  
R. W. Hardy ◽  
J. Williford ◽  
J. M. McDonald

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419 ◽  
Author(s):  
Nadezhda N. Sushchik ◽  
Olesia N. Makhutova ◽  
Anastasia E. Rudchenko ◽  
Larisa A. Glushchenko ◽  
Svetlana P. Shulepina ◽  
...  

Long-chain omega-3 polyunsaturated fatty acids (LC-PUFA) essential for human nutrition are mostly obtained from wild-caught fish. To sustain the LC-PUFA supply from natural populations, one needs to know how environmental and intrinsic factors affect fish fatty acid (FA) profiles and contents. We studied seven Salmoniformes species from two arctic lakes. We aimed to estimate differences in the FA composition of total lipids and two major lipid classes, polar lipids (PL) and triacylglycerols (TAG), among the species and to evaluate LC-PUFA contents corresponding to PL and TAG in muscles. Fatty acid profiles of PL and TAG in all species were characterized by the prevalence of omega-3 LC-PUFA and C16-C18 monoenoic FA, respectively. Fish with similar feeding spectra were identified similarly in multivariate analyses of total lipids, TAG and PL, due to differences in levels of mostly the same FA. Thus, the suitability of both TAG and total lipids for the identification of the feeding spectra of fish was confirmed. All species had similar content of LC-PUFA esterified as PL, 1.9–3.5 mg g−1, while the content of the TAG form strongly varied, from 0.9 to 9.8 mg g−1. The LC-PUFA-rich fish species accumulated these valuable compounds predominately in the TAG form.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 139
Author(s):  
Johanna Detzner ◽  
Elisabeth Krojnewski ◽  
Gottfried Pohlentz ◽  
Daniel Steil ◽  
Hans-Ulrich Humpf ◽  
...  

Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic–uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.


1914 ◽  
Vol 16 (4) ◽  
pp. 419-422
Author(s):  
P.A. Levene ◽  
C.J. West

Sign in / Sign up

Export Citation Format

Share Document