arctic lakes
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 63)

H-INDEX

41
(FIVE YEARS 3)

Boreas ◽  
2021 ◽  
Author(s):  
Alannah M. Niemeyer ◽  
Andrew S. Medeiros ◽  
Anthony Todd ◽  
Brent B. Wolfe

2021 ◽  
Author(s):  
Stéphanie Coulombe ◽  
Daniel Fortier ◽  
Frédéric Bouchard ◽  
Michel Paquette ◽  
Denis Lacelle ◽  
...  

Abstract. In formerly glaciated permafrost regions, extensive areas are still underlain by a considerable amount of glacier ice buried by glacigenic sediments. Although the extent and volume of undisturbed relict glacier ice are unknown, these ice bodies are predicted to melt with climate warming but their impact on landscape evolution remains poorly studied. The spatial distribution of buried glacier ice can play a significant role in reshaping periglacial landscapes, in particular thermokarst aquatic systems. This study focuses on lake initiation and development in response to the melting of buried glacier ice on Bylot Island, Nunavut. We studied a lake-rich area using lake-sediment cores, detailed bathymetric data, remotely sensed data and observations of buried glacier ice exposures. Our results suggest that initiation of deeper thermokarst lakes was triggered by the melting of buried glacier ice. They have subsequently enlarged through thermal and mechanical shoreline erosion, as well as vertically through thaw consolidation and subsidence, and they later coalesced with neighbouring water bodies to form larger lakes. Thus, these lakes now evolve as “classic” thermokarst lakes that expand in area and volume as a result of the melting of intrasedimental ground ice in the surrounding material and the underlying glaciofluvial and till material. It is expected that the deepening of thaw bulbs (taliks) and the enlargement of Arctic lakes in response to global warming will reach undisturbed buried glacier ice, if any, which in turn will substantially alter lake bathymetry, geochemistry and greenhouse gas emissions from Arctic lowlands.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanne B. Emerson ◽  
Ruth K. Varner ◽  
Martin Wik ◽  
Donovan H. Parks ◽  
Rebecca B. Neumann ◽  
...  

AbstractNorthern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.


Environments ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 82
Author(s):  
Nikolay Kashulin ◽  
Tatiana Kashulina ◽  
Alexander Bekkelund

Harmful algal blooms (HABs) in arctic lakes are recent phenomena. In our study, we performed a long-term analysis (1990–2017) of the eutrophication of Lake Imandra, a large subarctic lake, and explored the biodiversity of bloom-forming microorganisms of a 2017 summer HAB. We performed a 16Sr rRNA metabarcoding study of microbial communities, analysed the associations between N, P, C, and chlorophyll concentrations in the lake water, and developed models for the prediction of HABs based on total P concentration. We have demonstrated that blooms in Lake Imandra occur outside of optimal Redfield ratios and have a nonlinear association with P concentrations. We found that recent summer HABs in a lake occur as simultaneous blooms of a diatom Aulacoseira sp. and cyanobacteria Dolichospermum sp. We have studied the temporal dynamics of microbial communities during the bloom and performed an analysis of the publicly available Dolichospermum genomes to outline potential genetic mechanisms beneath simultaneous blooming. We found genetic traits requisite for diatom-diazotroph associations, which may lay beneath the simultaneous blooming of Aulacoseira sp. and Dolichospermum sp. in Lake Imandra. Both groups of organisms have the ability to store nutrients and form a dormant stage. All of these factors will ensure the further development of the HABs in Lake Imandra and the dispersal of these bloom-forming species to neighboring lakes.


2021 ◽  
Author(s):  
Clare B Miller ◽  
Michael B Parsons ◽  
Heather E Jamieson ◽  
Omid H Ardakani ◽  
R Timothy Patterson ◽  
...  

Abstract Arsenic (As) is commonly sequestered at the sediment-water interface (SWI) in mining-impacted lakes through adsorption and/or co-precipitation with authigenic iron (Fe)-(oxy)hydroxides or sulphides. The results of this study demonstrate that the accumulation of solid-phase organic matter (OM) in near-surface sediments also influences the mobility and fate of As in sub-Arctic lakes. Sediment gravity cores, sediment grab samples, and porewaters were collected from three lakes downstream of the former Tundra gold mine, Northwest Territories. Analysis of sediment using combined micro-X-ray fluorescence/diffraction, K-edge X-ray Absorption Near-Edge Structure (XANES), and organic petrography shows that As is associated with both aquatic (benthic and planktonic alginate) and terrestrially-derived OM (cutinite; funginite). Most As is hosted by fine-grained Fe-(oxy)hydroxides or sulphide minerals ( e.g., goethite, orpiment, lepidocrocite, mackinawite); however, grain-scale synchrotron-based analysis shows that As is also associated with amorphous OM. Mixed As oxidation states in porewater (median = 62 % As (V), 18 % As (III); n = 20) and sediment (median = 80 % As (-I) and (III), 19 % As (V); n = 9) indicate the presence of variable redox conditions in the near-surface sediment and suggest that post-depositional remobilization of As has occurred . Detailed characterization of As-bearing OM at and below the SWI suggests that OM plays an important role in stabilizing redox-sensitive authigenic minerals and associated As. Based on these findings, it is expected that increased concentrations of labile OM will drive post-depositional surface-enrichment of As in mining-impacted lakes and may increase or decrease As flux from sediments to overlying surface waters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254257
Author(s):  
Konrad Gajewski

Griffiths et al. (2017) analyzed several ponds and lakes from the Cape Herschel region of Ellesmere Island in order to “…explicitly examine the role of ice cover as the dominant driver of diatom assemblage change…”. I reanalyze their data and suggest that their classification scheme, that they propose is due to differences in ice cover seasonality (“warm”, “cool”, “cold”, and “oasis”), is confounded with other morphological and chemical variables that better explain the differences between the groups. The “cold” sites are the deepest (lakes) and differ from the small, shallow ponds that occasionally dry, which would therefore have different diatom assemblages and histories. The “oasis” sites are nutrient enriched and probably have more stable water supplies, thereby enabling an aquatic flora providing habitats for diatoms. A key part of their interpretation is that “warm” sites have responded more rapidly to recent climate change than “cold” or “cool” sites, but their chronologies do not allow for such a conclusion. There is no clear difference between “cool” and “warm” sites, and problems in dating the sequences means inferences about their histories are not supported by data. Their results, which are restricted to the past century, are contradicted by a Holocene sequence from the region.


2021 ◽  
Vol 13 (14) ◽  
pp. 2742
Author(s):  
Chong Liu ◽  
Huabing Huang ◽  
Fengming Hui ◽  
Ziqian Zhang ◽  
Xiao Cheng

The timing of lake ice-off regulates biotic and abiotic processes in Arctic ecosystems. Due to the coarse spatial and temporal resolution of available satellite data, previous studies mainly focused on lake-scale investigations of melting/freezing, hindering the detection of subtle patterns within heterogeneous landscapes. To fill this knowledge gap, we developed a new approach for fine-resolution mapping of Pan-Arctic lake ice-off phenology. Using the Scene Classification Layer data derived from dense Sentinel-2 time series images, we estimated the pixel-by-pixel ice break-up end date information by seeking the transition time point when the pixel is completely free of ice. Applying this approach on the Google Earth Engine platform, we mapped the spatial distribution of the break-up end date for 45,532 lakes across the entire Arctic (except for Greenland) for the year 2019. The evaluation results suggested that our estimations matched well with both in situ measurements and an existing lake ice phenology product. Based on the generated map, we estimated that the average break-up end time of Pan-Arctic lakes is 172 ± 13.4 (measured in day of year) for the year 2019. The mapped lake ice-off phenology exhibits a latitudinal gradient, with a linear slope of 1.02 days per degree from 55°N onward. We also demonstrated the importance of lake and landscape characteristics in affecting spring lake ice melting. The proposed approach offers new possibilities for monitoring the seasonal Arctic lake ice freeze–thaw cycle, benefiting the ongoing efforts of combating and adapting to climate change.


2021 ◽  
Vol 14 (4) ◽  
pp. 401-414
Author(s):  
M. V. Chertoprud ◽  
S. V. Krylenko ◽  
A. I. Lukinych ◽  
P. M. Glazov ◽  
O. P. Dubovskaya ◽  
...  

Abstract The taxonomic structure, typology, species richness, and total abundance of bentic and littoral macroinvertebrate communities from small lakes of the Arctic and Subarctic zones are considered on the basis of original data from three northern Palearctic regions (the foot of the Putorana Plateau, Kolguev Island, and Western Svalbard Island). A comparative analysis of the communities of these regions has been carried out. The features of High Arctic insular, Low Arctic, subarctic, and boreal lake communities are discussed using a large volume of literature data. The complex pattern of changes in the total benthos biomass of small lakes has been revealed: it decreases in the subarctic taiga, increases in the hypoarctic tundra, and decreases again in the High Arctic.


2021 ◽  
Author(s):  
Paola Ayala-Borda ◽  
Connie Lovejoy ◽  
Michael Power ◽  
Milla Rautio

Lakes and ponds are dominant components of Arctic landscapes and provide food and water for northern communities. In the Greiner Lake watershed, in Cambridge Bay (Nunavut, Canada), water bodies are small (84% < 5 ha) and shallow (99% <4 m). Such characteristics make them vulnerable to eutrophication as temperatures rise and nutrient concentrations from the greening landscape increase. Here, we investigated and compared 35 lakes and ponds in the Greiner watershed in August 2018 and 2019 to determine their current trophic states based on their chemical composition and phytoplankton communities. The ponds had higher trophic status than the lakes, but overall, most sites were oligotrophic. Lake ERA5, located upstream of any direct human influence was classified as eutrophic due to high total phosphorus (32.3 µg L<sup>-1</sup>) and a high proportion of Cyanobacteria (42.9% of total phytoplankton biovolume). Satellite imagery suggests the lake may have been eutrophic for the last 30 years. We hypothesize that the coupled effects of catchment characteristics and elevated local snow accumulation patterns promote higher nutrient leaching rates from the soils. We recommend further analysis and monitoring as eutrophication could become more widespread with ongoing climate change and the associated increases in temperature, precipitation, and catchment-lake coupling.


Sign in / Sign up

Export Citation Format

Share Document