Determination of reservoir induced earthquake using support vector machine and gaussian process regression

2013 ◽  
Vol 10 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Pijush Samui ◽  
Dookie Kim
2021 ◽  
Vol 11 (9) ◽  
pp. 4055
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.


Sign in / Sign up

Export Citation Format

Share Document