Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface

2018 ◽  
Vol 15 (3-4) ◽  
pp. 500-512
Author(s):  
Kun Li ◽  
Long-Wei Chen ◽  
Qing-Rui Chen ◽  
Shi-Kun Dai ◽  
Qian-Jiang Zhang ◽  
...  
Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. WB21-WB28 ◽  
Author(s):  
Zhengyong Ren ◽  
Chaojian Chen ◽  
Jingtian Tang ◽  
Huang Chen ◽  
Shuanggui Hu ◽  
...  

A closed-form formula is developed for the full magnetic gradient tensor of a polyhedral body with a homogeneous magnetization vector. It is based on the direct derivative technique on the closed form of the magnetic field. These analytical expressions are implemented into an easy-to-use C++ package which simultaneously calculates the magnetic potential, the magnetic field, and the full magnetic gradient tensor for magnetic targets. Modern unstructured tetrahedral grids are adopted to represent the polyhedral body so that our code can deal with arbitrarily complicated magnetic targets. A prismatic body is tested to verify the accuracies of our closed-form formula. Excellent agreements are obtained between our closed-form solutions and solutions of a prismatic magnetic body with differences up to machine precision. A pipeline model is used to demonstrate its capability to deal with complicated magnetic targets. This C++ code is freely available to the magnetic exploration community.


2019 ◽  
Vol 878 (2) ◽  
pp. 124 ◽  
Author(s):  
Virgilio Quattrociocchi ◽  
Giuseppe Consolini ◽  
Maria Federica Marcucci ◽  
Massimo Materassi

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. A31-A35 ◽  
Author(s):  
Zhengyong Ren ◽  
Huang Chen ◽  
Chaojian Chen ◽  
Yiyuan Zhong ◽  
Jingtian Tang

We have developed a new analytical expression for the magnetic-gradient tensor for polyhedrons with homogeneous magnetization vectors. Instead of performing the direct derivative on the closed-form solutions of the magnetic field, it is obtained by first transforming the volume integrals of the magnetic-field tensor into surface integrals over polyhedral facets, in terms of the gradient theorem. Second, the surface divergence theorem transforms the surface integrals over polyhedral facets into edge integrals and structure-simplified surface integrals. Third, we develop analytical expressions for these edge integrals and simplified surface integrals. We use a synthetic prismatic target to verify the accuracies of the new analytical expression. Excellent agreements are obtained between our results and those calculated by other published formulas. The new analytical expression of the magnetic-gradient tensor can play a fundamental role in advancing magnetic mineral explorations, environmental surveys, unexploded ordnance and submarine detection, aeromagnetic and marine magnetic surveys because more and more magnetic tensor data have been collected by magnetic-tensor gradiometry instruments.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
F. Bocchio

t is shown that on the magnetization axis of a uniformly magnetized body of constant density the magnetic field intensity displays a «tidal» structure,i.e. the ratios among the differential magnetic field intensity in three orthogonal directions are the same as the ratios among the gravitational gradient tensor components pertaining to the same directions; it is also seen that the same characteristic ratios occur, both locally and non-locally, among the components of the magnetic field intensity and among the components of the gradient tensors of the two fields.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Sign in / Sign up

Export Citation Format

Share Document