Solving single-frequency phase ambiguity using parameter weights fitting and constrained equation ambiguity resolution methods

2006 ◽  
Vol 13 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Ren-gui Yang ◽  
Ji-kun Ou ◽  
Yun-bin Yuan ◽  
Ke-fei Zhang ◽  
De-bao Wen ◽  
...  
2010 ◽  
Vol 63 (4) ◽  
pp. 645-661 ◽  
Author(s):  
Fabrizio Pieregentili ◽  
Emiliano Cordelli

This paper deals with the problem of determining the baseline vector between two GPS receivers in single frequency (L1) using the basic principles of interferometric Differential GPS, therefore using the interferometric relations between the two receivers and the satellites visible to both receivers. As a preliminary step, ambiguity identification was solved using the results provided by the Kalman filter; these results were optimized by evaluating the Dilution Of Precision indexes for satellites in view of the receivers. Results achieved by applying this first procedure to data collected are discussed. To increase the accuracy of the results, a new, computationally fast algorithm for carrier phase ambiguity resolution on data collected from static and dynamics acquisitions was developed, implemented and tested. The new algorithm permitted an increase of accuracy of about two orders of magnitude with respect to results given by filtered Double Difference in the resolution of baseline vector.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanke Liu ◽  
Mingkui Wu ◽  
Xiaohong Zhang ◽  
Wang Wang ◽  
Wei Ke ◽  
...  

AbstractThe BeiDou global navigation satellite system (BDS-3) constellation deployment has been completed on June 23, 2020, with a full constellation comprising 30 satellites. In this study, we present the performance assessment of single-epoch Real-Time Kinematic (RTK) positioning with tightly combined BeiDou regional navigation satellite system (BDS-2) and BDS-3. We first investigate whether code and phase Differential Inter-System Biases (DISBs) exist between the legacy B1I/B3I signals of BDS-3/BDS-2. It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints. These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning. Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3. The performance is evaluated through ambiguity resolution success rate, ambiguity dilution of precision, as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan. Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions. Moreover, the RTK performance is much improved with tightly combined BDS-3/BDS-2, particularly in challenging or harsh conditions. The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9% even with an elevation cut-off angle of 40°, indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia–Pacific region. Meanwhile, the three-dimensional (East/North/Up) positioning accuracy of BDS-3 only solution (0.52 cm/0.39 cm/2.14 cm) in the kinematic test is significantly better than that of the BDS-2 only solution (0.85 cm/1.02 cm/3.01 cm) due to the better geometry of the current BDS-3 constellation. The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm, 0.22 cm, and 1.80 cm, respectively.


Author(s):  
Joana F. Reis ◽  
Catarina N. Matias ◽  
Francesco Campa ◽  
José P. Morgado ◽  
Paulo Franco ◽  
...  

Background and aim: Monitoring bioelectric phase angle (PhA) provides important information on the health and the condition of the athlete. Together with the vector length, PhA constitutes the bioimpedance vector analysis (BIVA) patterns, and their joint interpretation exceeds the limits of the evaluation of the PhA alone. The present investigation aimed to monitor changes in the BIVA patterns during a training macrocycle in swimmers, trying to ascertain if these parameters are sensitive to training load changes across a 13-week training period. Methods: Twelve national and international level swimmers (four females; eight males; 20.9 ± 1.9 years; with a competitive swimming background of 11.3 ± 1.8 years; undertaking 16–20 h of pool training and 4–5 h of dry-land training per week and 822.0 ± 59.0 International Swimming Federation (FINA) points) were evaluated for resistance (R) and reactance (Xc) using a single frequency phase sensitive bioimpedance device at the beginning of the macrocycle (M1), just before the beginning of the taper period (M2), and just before the main competition of the macrocycle (M3). At the three-time assessment points, swimmers also performed a 50 m all-out first stroke sprint with track start (T50 m) while time was recorded. Results: The results of the Hotelling T2 test showed a significant vector displacement due to simultaneous R and Xc changes (p < 0.001), where shifting from top to bottom along the major axis of the R-Xc graph from M1 to M2 was observed. From M2 to M3, a vector displacement up and left along the minor axis of the tolerance ellipses resulted in an increase in PhA (p < 0.01). The results suggest a gain in fluid with a decrease in cellular density from M1 to M2 due to decrements in R and Xc. Nevertheless, the reduced training load characterizing taper seemed to allow for an increase in PhA and, most importantly, an increase of Xc, thus demonstrating improved cellular health and physical condition, which was concomitant with a significant increase in the T50 m performance (p < 0.01). Conclusions: PhA, obtained by bioelectrical R and Xc, can be useful in monitoring the condition of swimmers preparing for competition. Monitoring BIVA patterns allows for an ecological approach to the swimmers’ health and condition assessment without resorting to equations to predict the related body composition variables.


2020 ◽  
Vol 12 (15) ◽  
pp. 2374 ◽  
Author(s):  
Hang Yu ◽  
Houzeng Han ◽  
Jian Wang ◽  
Haiping Xiao ◽  
Chuanyang Wang

Single-frequency GPS/BeiDou navigation satellite system (BDS) real-time kinematic (RTK) and inertial navigation system (INS) integration has wide range of application prospects due to the global deployment of GPS along with the rapid development of BDS. The instantaneous single-frequency ambiguity resolution will be significantly improved by the combined GPS/BDS and INS configuration. Owing to road conditions and an inertial measurement unit (IMU) on the carrier not being rigidly mounted, biased measurements in the IMU will occasionally emerge, leading to biased INS predictions. However, bias or inaccuracy from INS-predicted position can prevent the successful resolution of the whole set of ambiguities. This paper proposes the use of a positional polynomial fitting (PPF) constraint to compensate for the epochs with abnormal INS predictions. The aid from PPF is provided at two levels, i.e., at the ambiguity resolution (AR) level and at the solution level. In order to further increase the availability of ambiguity-fixed positioning solutions, a partial ambiguity resolution (PAR) strategy is introduced when full ambiguity resolution (FAR) fails. A field vehicular experiment was performed to show the validity of the proposed PPF-aided method by comparing different schemes regarding different INS-aided satellite system configurations, different AR strategies, and whether the PPF-aided method was adopted. The results show that the most attractive scheme is to combine the PAR with the PPF-aided dual-constellation and INS integration.


2008 ◽  
Vol 62 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Mardina Abdullah ◽  
Hal J. Strangeways ◽  
David M. A. Walsh

Ambiguity resolution is essential for precise range determination. As it is difficult to process, a good ionospheric model is essential to get unambiguous results or to reduce time to solve the ambiguities. In this paper, a developed model to determine the differential ionospheric error to sub-centimetre accuracy is described. As a function of elevation angle and TEC, the model is applicable at any location and only requires a single frequency receiver provided the TEC over the reference station is known. It has been evaluated using real GPS measurements at spaced stations in Glasgow (UK) and Stirling (UK), where the results showed good correlation. It was found that the variance ratio and reference variance of the ambiguity resolution rate and the quality of the differential positioning solution are improved. Significant improvements of more than 50% have also been found by correcting the differential ionospheric delay in the measurements for the estimated positions.


2010 ◽  
Vol 84 (5) ◽  
pp. 327-337 ◽  
Author(s):  
Willy Bertiger ◽  
Shailen D. Desai ◽  
Bruce Haines ◽  
Nate Harvey ◽  
Angelyn W. Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document