scholarly journals Fixed point theorems in preordered sets

Author(s):  
Jarosław Górnicki

AbstractRan and Reurings (Proc Am Math Soc 132(5):1435–1443, 2003) extended the Banach contraction principle to the setting of partially ordered metric spaces and recently Proinov (J Fixed Point Theory Appl 22:21, 2020) extended and unified many earlier fixed point theorems. In this paper we will present analogous results for the significantly wider class of mappings on preordered metric spaces. We give non-trivial examples of Kannan-type mappings.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 488
Author(s):  
Pravin Baradol ◽  
Jelena Vujaković ◽  
Dhananjay Gopal ◽  
Stojan Radenović

In this paper, we provide an approach to establish the Banach contraction principle ( for the case λ ∈ [ 0 , 1 ) ) , Edelstein, Reich, and Meir–Keeler type contractions in the context of graphical rectangular b-metric space. The obtained results not only enrich and improve recent fixed point theorems of this new metric spaces but also provide positive answers to the questions raised by Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019).


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1259-1268 ◽  
Author(s):  
Margherita Sgroi ◽  
Calogero Vetro

Wardowski [Fixed Point Theory Appl., 2012:94] introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.


Author(s):  
Abdelkarim Kari ◽  
Mohamed Rossafi ◽  
Hamza Saffaj ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

In the last few decades, a lot of generalizations of the Banach contraction principle had been introduced. In this paper, we present the notion of θ -contraction and θ − ϕ -contraction in generalized asymmetric metric spaces to study the existence and uniqueness of the fixed point for them. We will also provide some illustrative examples. Our results improve many existing results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chi-Ming Chen ◽  
Jin-Chirng Lee ◽  
Chao-Hung Chen

We prove two new fixed point theorems in the framework of partially ordered metric spaces. Our results generalize and improve many recent fixed point theorems in the literature.


2018 ◽  
Vol 26 (4) ◽  
pp. 211-224 ◽  
Author(s):  
Juan J. Nieto ◽  
Abdelghani Ouahab ◽  
Rosana Rodríguez-López

Abstract We present the random version of the classical Banach contraction principle and some of its generalizations to ordered metric spaces or in metric spaces endowed with a graph.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Ing-Jer Lin ◽  
Wei-Shih Du ◽  
Qiao-Feng Zheng

Some new fixed point theorems are established in the setting of complex valuedG-metric spaces. These new results improve and generalize Kang et al.’s results, the Banach contraction principle, and some well-known results in the literature.


Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 84 ◽  
Author(s):  
Vahid Parvaneh ◽  
Nawab Hussain ◽  
Aiman Mukheimer ◽  
Hassen Aydi

In [Fixed Point Theory Appl., 2015 (2015):185], the authors introduced a new concept of modified contractive mappings, generalizing Ćirić, Chatterjea, Kannan, and Reich type contractions. They applied the condition ( θ 4 ) (see page 3, Section 2 of the above paper). Later, in [Fixed Point Theory Appl., 2016 (2016):62], Jiang et al. claimed that the results in [Fixed Point Theory Appl., 2015 (2015):185] are not real generalizations. In this paper, by restricting the conditions of the control functions, we obtain a real generalization of the Banach contraction principle (BCP). At the end, we introduce a weakly JS-contractive condition generalizing the JS-contractive condition.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed Jleli ◽  
Erdal Karapinar ◽  
Bessem Samet

Very recently, Abkar and Gabeleh (2013) observed that some best proximity point results under the -property can be obtained from the same results in fixed-point theory. In this paper, motivated by this mentioned work, we show that the most best proximity point results on a metric space endowed with a partial order (under the -property) can be deduced from existing fixed-point theorems in the literature. We present various model examples to illustrate this point of view.


2015 ◽  
Vol 31 (1) ◽  
pp. 127-134
Author(s):  
DARIUSZ WARDOWSKI ◽  
◽  
NGUYEN VAN DUNG ◽  

In this paper, we show that the existence of fixed points in some known fixed point theorems in the literature is a consequence of the Banach contraction principle.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Abdelkarim Kari ◽  
Mohamed Rossafi ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions. In this paper, inspired by the concept of θ ‐ ϕ -contraction in metric spaces, introduced by Zheng et al., we present the notion of θ ‐ ϕ -contraction in b -rectangular metric spaces and study the existence and uniqueness of a fixed point for the mappings in this space. Our results improve many existing results.


Sign in / Sign up

Export Citation Format

Share Document