Improved HVSR site classification method for free-field strong motion stations validated with Wenchuan aftershock recordings

2011 ◽  
Vol 10 (3) ◽  
pp. 325-337 ◽  
Author(s):  
Ruizhi Wen ◽  
Yefei Ren ◽  
Dacheng Shi
2010 ◽  
Vol 23 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Ruizhi Wen ◽  
Yefei Ren ◽  
Zhenghua Zhou ◽  
Dacheng Shi

2020 ◽  
Vol 110 (6) ◽  
pp. 2892-2911
Author(s):  
Eri Ito ◽  
Kenichi Nakano ◽  
Fumiaki Nagashima ◽  
Hiroshi Kawase

ABSTRACT The main purpose of the site classification or velocity determination at a target site is to obtain or estimate the horizontal site amplification factor (HSAF) at that site during future earthquakes because HSAF would have significant effects on the strong-motion characteristics. We have been investigating various kinds of methods to delineate the S-wave velocity structures and the subsequent HSAF, as precisely as possible. After the advent of the diffuse field concept, we have derived a simple formula based on the equipartitioned energy density observed in the layered half-space for incident body waves. In this study, based on the diffuse field concept, together with the generalized spectral inversion technique (GIT), we propose a method to directly estimate the HSAF of the S-wave portion from the horizontal-to-vertical spectral ratio of earthquakes (eHVSRs). Because the vertical amplification is included in the denominator of eHVSR, it cannot be viewed as HSAF without correction. We used GIT to determine both the HSAF and the vertical site amplification factor (VSAF) simultaneously from strong-motion data observed by the networks in Japan and then deduced the log-averaged vertical amplification correction function (VACF) from VSAFs at a total of 1678 sites in which 10 or more earthquakes have been observed. The VACF without a category has a constant amplitude of about 2 in the frequency range from 1 to 15 Hz. By multiplying eHVSR by VACF, we obtained the simulated HSAF. We verified the effectiveness of this correction method using data from observation sites not used in the aforementioned averaging in the frequency range from 0.12 to 15 Hz.


2000 ◽  
Vol 16 (2) ◽  
pp. 511-532 ◽  
Author(s):  
Jonathan P. Stewart

Strong motion data from sites having both an instrumented structure and free-field accelerograph are compiled to evaluate the conditions for which foundation recordings provide a reasonably unbiased estimate of free-field motion with minimal uncertainty. Variations between foundation and free-field spectral acceleration are found to correlate well with dimensionless parameters that strongly influence kinematic and inertial soil-structure interaction phenomena such as embedement ratio, dimensionless frequency (i.e., product of radial frequency and foundation radius normalized by soil shear wave velocity), and ratio of structure-to-soil stiffness. Low frequency components of spectral acceleration recorded on shallowly embedded foundations are found to provide good estimates of free-field motion. In contrast, foundation-level peak ground acceleration (both horizontal and vertical) and maximum horizontal velocity, are found to be de-amplified. Implications for ground motion selection procedures employed in attenuation relations are discussed, and specific recommendations are made as to how these procedures could be improved.


Author(s):  
G. Norris ◽  
R. Siddharthan ◽  
Z. Zafir ◽  
S. Abdel-Ghaffar ◽  
P. Gowda

The California Strong Motion Instrumentation Program's Loma Prieta records at Oakland Outer Harbor Wharf maybe used to study the free-field motions, the possible softening of soils surrounding the piles supporting the instrumented wharf, the determination of the motion on the instrumented wharf using free-field motion input and deflection-compatible lateral and vertical pile foundation stiffnesses, and conditions under which a soil-foundation interaction failure or structural failure of the batter piles might have developed.


Sign in / Sign up

Export Citation Format

Share Document