Site Classification of Strong Motion Stations of Uttarakhand, India, Based on Standard Spectral Ratio, and Horizontal-to-Vertical Spectral Ratio Methods

Author(s):  
N. H. Harinarayan ◽  
Abhishek Kumar
Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


2020 ◽  
Vol 110 (6) ◽  
pp. 2892-2911
Author(s):  
Eri Ito ◽  
Kenichi Nakano ◽  
Fumiaki Nagashima ◽  
Hiroshi Kawase

ABSTRACT The main purpose of the site classification or velocity determination at a target site is to obtain or estimate the horizontal site amplification factor (HSAF) at that site during future earthquakes because HSAF would have significant effects on the strong-motion characteristics. We have been investigating various kinds of methods to delineate the S-wave velocity structures and the subsequent HSAF, as precisely as possible. After the advent of the diffuse field concept, we have derived a simple formula based on the equipartitioned energy density observed in the layered half-space for incident body waves. In this study, based on the diffuse field concept, together with the generalized spectral inversion technique (GIT), we propose a method to directly estimate the HSAF of the S-wave portion from the horizontal-to-vertical spectral ratio of earthquakes (eHVSRs). Because the vertical amplification is included in the denominator of eHVSR, it cannot be viewed as HSAF without correction. We used GIT to determine both the HSAF and the vertical site amplification factor (VSAF) simultaneously from strong-motion data observed by the networks in Japan and then deduced the log-averaged vertical amplification correction function (VACF) from VSAFs at a total of 1678 sites in which 10 or more earthquakes have been observed. The VACF without a category has a constant amplitude of about 2 in the frequency range from 1 to 15 Hz. By multiplying eHVSR by VACF, we obtained the simulated HSAF. We verified the effectiveness of this correction method using data from observation sites not used in the aforementioned averaging in the frequency range from 0.12 to 15 Hz.


2017 ◽  
Vol 22 (2) ◽  
pp. 419-438 ◽  
Author(s):  
Sumer Chopra ◽  
Vikas Kumar ◽  
Pallabee Choudhury ◽  
R. B. S. Yadav

2010 ◽  
Vol 23 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Ruizhi Wen ◽  
Yefei Ren ◽  
Zhenghua Zhou ◽  
Dacheng Shi

2009 ◽  
Vol 14 (3) ◽  
pp. 543-563 ◽  
Author(s):  
M. Abdullah Sandıkkaya ◽  
Mustafa Tolga Yılmaz ◽  
B. Sadık Bakır ◽  
Özdoğan Yılmaz

2006 ◽  
Vol 22 (1) ◽  
pp. 169-188 ◽  
Author(s):  
Sheri Molnar ◽  
John F. Cassidy

The applicability of the microtremor spectral ratio method is examined by comparing microtremor and weak-motion earthquake site responses at seven permanent strong-motion sites in Victoria, British Columbia. For each site, a weak-motion earthquake standard spectral ratio (bedrock reference), the average horizontal-to-vertical spectral ratio of up to five weak-motion earthquakes, and the average microtremor (Nakamura method) spectral ratio are compared. The geologic setting of Victoria is ideal for site response studies with a near-surface high impedance contrast between thin geologic layers of Victoria clay (about 11 m maximum in this study) and Pleistocene till or bedrock. Regardless of excitation source (weak-motion earthquakes or microtremors) and spectral ratio method, similar peak amplitudes and fundamental frequencies were found. Thicker material (>10 m) sites displayed higher peak amplitudes (up to six times amplification) at frequencies of 2–5 Hz compared to sites with a thin lens of material (<3 m) over bedrock that showed peak amplitudes at frequencies of >8 Hz.


1998 ◽  
Vol 14 (1) ◽  
pp. 203-224 ◽  
Author(s):  
D. Raptakis ◽  
N. Theodulidis ◽  
K. Pitilakis

In this study, the standard spectral ratio and the horizontal-to-vertical spectral ratio techniques are applied in order to study their effectiveness in investigating and quantifying the influence of geological conditions on strong ground motion. For this purpose, an accelerogram data set recorded at the Euroseistest array in the Mygdonia graben (lake Volvi area) near Thessaloniki, Greece, during the period April 1994 to June 1996 is used. Both experimental techniques show similar spectral ratio shapes with comparable fundamental resonant frequencies, which are well correlated with the well known geotechnical-geological conditions. Namely, the resonant frequency at the center of the valley is shifted to lower values, less than 1 Hz, while at the edge it is shifted to higher values, greater than 2 Hz. The horizontal-to-vertical spectral ratio technique is an effective method to estimate some basic characteristics of local site effects using a single accelerograph station. It reveals the fundamental resonant frequency of alluvial deposits by using only a single strong motion station, while the absolute level of the horizontal-to-vertical spectral ratio method tends to underestimate the amplification level compared to the standard spectral ratio technique.


2006 ◽  
Vol 22 (2) ◽  
pp. 511-531 ◽  
Author(s):  
Vietanh Phung ◽  
Gail M. Atkinson ◽  
David T. Lau

The ground motions of the Chi-Chi, Taiwan, earthquake ( Mw=7.6) were recorded at 420 strong-motion stations, including 69 near-fault sites. However, the site conditions of many stations are not available. Among 420 strong-motion stations, the site conditions are known for only 87 stations, which were classified into four groups ( S1, S2, S3, and S4) by using borehole data and some surface geology. This paper presents a methodology to estimate the missing site condition information at strong-motion stations in Taiwan. The method is based on the shape of the 5% damped pseudo-acceleration spectrum of the horizontal ground motion component normalized with respect to average PGA, where the classification scheme is developed using the data from the 87 stations for which the site conditions are known. Possible effects of soil nonlinearity, and distance to the fault on the classification are investigated. The results obtained from the proposed methodology are well correlated with the available known site classification information data. The methodology is then applied to estimate the site condition for the other 333 stations without known site classification. Our results are compared to previous results obtained based on interpretation of geologic maps and geomorphologic data. We find that the two approaches agree in 71% of the cases. We also tested the horizontal-to-vertical spectral ratio technique to estimate the site classification of other 333 strong-motion stations. However, this technique resulted in lower accuracy than does the proposed technique based on the spectral shape of normalized response spectra.


Sign in / Sign up

Export Citation Format

Share Document