Karyotype and genomic in situ hybridization pattern in ×Brassicoraphanus, an intergeneric hybrid between Brassica campestris ssp. pekinensis and Raphanus sativus

2011 ◽  
Vol 6 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Sun Jung Lim ◽  
Soo-Seong Lee ◽  
Jae-Wook Bang
Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Pernilla Ellneskog-Staam ◽  
Björn Salomon ◽  
Roland von Bothmer ◽  
Kesara Anamthawat-Jónsson

The genomic constitution of two species in the genus Psammopyrum, i.e., Ps. athericum (2n = 6x = 42) and Ps. pungens (2n = 8x = 56), was studied by genomic in situ hybridization (GISH). In Ps. athericum, one diploid chromosome set hybridized to a genomic probe from Pseudoroegneria ferganensis (St genome), one diploid set to a probe from Agropyron cristatum (P genome), and one diploid set to a probe from Thinopyrum junceiforme (EbEe genomes) or Th. bessarabicum (Eb genome). Substituting the St-genome probe with an L-genome probe from Festucopsis serpentinii resulted in exactly the same hybridization pattern, suggesting a genomic constitution of EStP or ELP for Ps. athericum. The same probes used on Ps. pungens showed two diploid sets of chromosomes hybridizing to the St-genome probe, one diploid set hybridizing to the P-genome probe, and one diploid set hybridizing to the EbEe-genome probe. The L-genome probe hybridized to approximately 14 of the chromosomes that were labeled by the St-genome probe. Hence the genomic constitution for Ps. pungens is proposed to be EStStP or EStLP.Key Words: Psammopyrum athericum, Psammopyrum pungens, in situ hybridization, Elytrigia pycnantha, Elytrigia pungens, genome analysis.


Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 613-618 ◽  
Author(s):  
E. N. Jellen ◽  
B. S. Gill ◽  
T. S. Cox

The genomic in situ hybridization (GISH) technique was used to discriminate between chromosomes of the C genome and those of the A and A/D genomes in allopolyploid oat species (genus Avena). Total biotinylated DNA from A. strigosa (2n = 2x = 14, AsAs genome) was mixed with sheared, unlabelled total DNA from A. eriantha (2n = 2x = 14, CpCp) at a ratio of 1:200 (labelled to unlabelled). The resulting hybridization pattern consisted of 28 mostly labelled and 14 mostly unlabelled chromosomes in the hexaploids. Attempts to discriminate between chromosomes of the A and D genomes in A. sativa (2n = 6x = 42, AACCDD) were unsuccessful using GISH. At least eight intergenomic translocation segments were detected in A. sativa 'Ogle', several of which were not observed in A. byzantina 'Kanota' (2n = 6x = 42, AACCDD) or in A. sterilis CW 439-2 (2n = 6x = 42, AACCDD). At least five intergenomic translocation segments were observed in A. maroccana CI 8330 'Magna' (2n = 4x = 28, AACC). In both 'Ogle' and 'Magna', positions of most of these translocations matched with C-banding patterns.Key words: Avena sativa, oat, in situ hybridization, C-banding, Avena macrostachya.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.


2010 ◽  
Vol 28 (2) ◽  
pp. 206-211 ◽  
Author(s):  
Hai-Qing Yu ◽  
Chun Zhang ◽  
Chun-Bang Ding ◽  
Hai-Qin Zhang ◽  
Yong-Hong Zhou

1997 ◽  
Vol 95 (8) ◽  
pp. 1320-1324 ◽  
Author(s):  
R. J. Snowdon ◽  
W. Köhler ◽  
W. Friedt ◽  
A. Köhler

2017 ◽  
pp. 253-258
Author(s):  
F. Ramzan ◽  
A. Younis ◽  
K.B. Lim ◽  
S.H. Bae ◽  
M.J. Kwon ◽  
...  

2009 ◽  
Vol 56 (6) ◽  
pp. 843-850 ◽  
Author(s):  
Yongqiang Wang ◽  
Hui Zhi ◽  
Wei Li ◽  
Haiquan Li ◽  
Yongfang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document