Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena)

Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 613-618 ◽  
Author(s):  
E. N. Jellen ◽  
B. S. Gill ◽  
T. S. Cox

The genomic in situ hybridization (GISH) technique was used to discriminate between chromosomes of the C genome and those of the A and A/D genomes in allopolyploid oat species (genus Avena). Total biotinylated DNA from A. strigosa (2n = 2x = 14, AsAs genome) was mixed with sheared, unlabelled total DNA from A. eriantha (2n = 2x = 14, CpCp) at a ratio of 1:200 (labelled to unlabelled). The resulting hybridization pattern consisted of 28 mostly labelled and 14 mostly unlabelled chromosomes in the hexaploids. Attempts to discriminate between chromosomes of the A and D genomes in A. sativa (2n = 6x = 42, AACCDD) were unsuccessful using GISH. At least eight intergenomic translocation segments were detected in A. sativa 'Ogle', several of which were not observed in A. byzantina 'Kanota' (2n = 6x = 42, AACCDD) or in A. sterilis CW 439-2 (2n = 6x = 42, AACCDD). At least five intergenomic translocation segments were observed in A. maroccana CI 8330 'Magna' (2n = 4x = 28, AACC). In both 'Ogle' and 'Magna', positions of most of these translocations matched with C-banding patterns.Key words: Avena sativa, oat, in situ hybridization, C-banding, Avena macrostachya.

Genome ◽  
1995 ◽  
Vol 38 (4) ◽  
pp. 747-751 ◽  
Author(s):  
J. M. Leggett ◽  
G. S. Markhand

Genomic in situ hybridization using total genomic DNA extracted from the C genome diploid species Avena eriantha (2n = 2x = 14, genome CpCp) was used to identify monosomics (2n = 6x − 1 = 41) of the constituent genomes of the hexaploid cultivated oat A. sativa L. cv. Sun II (2n = 6x = 42, genomes AACCDD). The results demonstrate 3 AD/C and 6 C/AD chromosome translocations, indicate that five of the missing monosomics are derived from the C genome, and show that there are duplicates within the partial monosomic series. Chromosome polymorphisms between some monosomic lines are also demonstrated.Key words: Avena, monosomics, genomic in situ hybridization, genomic identification.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1230-1237 ◽  
Author(s):  
M L Irigoyen ◽  
C Linares ◽  
E Ferrer ◽  
A Fominaya

Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C–14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C–14D interchange was also monitored in these lines.Key words: Avena sativa, monosomics, FISH mapping, genomic identification, intergenomic translocations.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Pernilla Ellneskog-Staam ◽  
Björn Salomon ◽  
Roland von Bothmer ◽  
Kesara Anamthawat-Jónsson

The genomic constitution of two species in the genus Psammopyrum, i.e., Ps. athericum (2n = 6x = 42) and Ps. pungens (2n = 8x = 56), was studied by genomic in situ hybridization (GISH). In Ps. athericum, one diploid chromosome set hybridized to a genomic probe from Pseudoroegneria ferganensis (St genome), one diploid set to a probe from Agropyron cristatum (P genome), and one diploid set to a probe from Thinopyrum junceiforme (EbEe genomes) or Th. bessarabicum (Eb genome). Substituting the St-genome probe with an L-genome probe from Festucopsis serpentinii resulted in exactly the same hybridization pattern, suggesting a genomic constitution of EStP or ELP for Ps. athericum. The same probes used on Ps. pungens showed two diploid sets of chromosomes hybridizing to the St-genome probe, one diploid set hybridizing to the P-genome probe, and one diploid set hybridizing to the EbEe-genome probe. The L-genome probe hybridized to approximately 14 of the chromosomes that were labeled by the St-genome probe. Hence the genomic constitution for Ps. pungens is proposed to be EStStP or EStLP.Key Words: Psammopyrum athericum, Psammopyrum pungens, in situ hybridization, Elytrigia pycnantha, Elytrigia pungens, genome analysis.


Genome ◽  
2010 ◽  
Vol 53 (1) ◽  
pp. 14-22 ◽  
Author(s):  
X. C. Yao ◽  
X. Z. Du ◽  
X. H. Ge ◽  
J. P. Chen ◽  
Z. Y. Li

From dual-color genomic in situ hybridization (GISH) analysis of three trigenomic hybrids, Brassica maurorum (MM, 2n = 16) × B. juncea (AABB, 2n = 36) (M.AB), B. maurorum × B. carinata (BBCC, 2n = 34) (M.BC), and B. carinata × B. maurorum (BC.M), the three genomes of each hybrid were distinguished and autosyndesis and allosyndesis were evaluated. In M.AB, up to two autosyndetic bivalents occurred among the chromosomes of each genome; a maximum of three allosyndetic bivalents appeared between A-B, A-M, and B-M genomes. The similar pairings in M.BC and BC.M suggested that the cytoplasm of B. maurorum or B. carinata had no obvious effect on chromosome pairing. In M.BC and BC.M, a maximum of one autosyndetic bivalent was found for B and M genomes, but two were found for the C genome; from 0 to 2 allosyndetic bivalents were observed between B-C, B-M, and C-M genomes. The B-M allosyndesis frequency was higher than the A-M or C-M allosyndesis frequency in these hybrids, revealing the closer relationship of B and M genomes. The allosyndesis frequency was higher than the autosyndesis frequency among A, B, and C genomes in these combinations, suggesting that intergenomic homoeology was higher than intragenomic homoeology. The implications for genome evolution and crop breeding are discussed.


Genome ◽  
2009 ◽  
Vol 52 (2) ◽  
pp. 156-165 ◽  
Author(s):  
István Molnár ◽  
Elena Benavente ◽  
Márta Molnár-Láng

The frequency and pattern of irradiation-induced intergenomic chromosome rearrangements were analysed in the mutagenized (M0) and the first selfed (M1) generations of Triticum aestivum  L. – Aegilops biuncialis Vis. amphiploids (2n = 70, AABBDDUbUbMbMb) by multicolour genomic in situ hybridization (mcGISH). mcGISH allowed the simultaneous discrimination of individual Ae. biuncialis genomes and wheat chromosomes. Dicentric chromosomes, fragments, and terminal translocations were most frequently induced by γ-irradiation, but centric fusions and internal exchanges were also more abundant in the treated plants than in control amphiploids. Rearrangements involving the Ub genome (Ub-type aberrations) were more frequent than those involving the Mb genome (Mb-type aberrations). This irradiation sensitivity of the Ub chromosomes was attributed to their centromeric or near-centromeric regions, since Ub-type centric fusions were significantly more abundant than Mb-type centric fusions at all irradiation doses. Dicentrics completely disappeared, but centric fusions and translocations were well transmitted from M0 to M1. Identification of specific chromosomes involved in some rearrangements was attempted by sequential fluorescence in situ hybridization with a mix of repeated DNA probes and GISH on the same slide. The irradiated amphiploids formed fewer seeds than untreated plants, but normal levels of fertility were recovered in their offspring. The irradiation-induced wheat – Ae. biuncialis intergenomic translocations will facilitate the successful introgression of drought tolerance and other alien traits into bread wheat.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 687-691 ◽  
Author(s):  
L Poggio ◽  
V Confalonieri ◽  
C Comas ◽  
A Cuadrado ◽  
N Jouve ◽  
...  

Genomic affinities between Tripsacum dactyloides (2n = 72) and Zea mays ssp. mays (2n = 20 + 5 B) were analyzed through GISH (genomic in situ hybridization) to ascertain the degree of chromosome homology between the two genera. Mitotic cells of T. dactyloides were simultaneously probed with total genomic DNA from Z. mays ssp .mays (2n = 20) and with rDNA (pTA71). A disperse pattern of hybridization signal among all 72 chromosomes, corresponding to maize total DNA, and six strong fluorescent signals due to the rDNA probe hybridizing on 3 chromosome pairs of T. dactyloides were observed. Mitotic chromosomes from Z. mays ssp. mays (2n = 20 + 5 B) were hybridized with a maize line that lacked B chromosomes and knobs and with total DNA from T. dactyloides. The knobless line of maize hybridized intensely on all chromosomes except for some regions where the probe bound less. Tripsacum dactyloides bound intensely on one terminal region of each B chromosome and to some regions of chromosome pairs 2, 6, and 8. These regions are DAPI positive and coincide with regions that displayed lower affinity with the probe from the knobless maize line. The possible significance of these results is discussed briefly.Key words: Tripsacum dactyloides, Zea mays ssp. mays, maize B chromosomes, genomic in situ hybridization, GISH.


Sign in / Sign up

Export Citation Format

Share Document