brassica campestris
Recently Published Documents


TOTAL DOCUMENTS

1125
(FIVE YEARS 148)

H-INDEX

47
(FIVE YEARS 6)

Author(s):  
Xiaosong Yang ◽  
Zhengyi Hu ◽  
Yuexian Liu ◽  
Xiaofan Xie ◽  
Lijuan Huang ◽  
...  

Abstract Background Polycyclic aromatic hydrocarbons (PAHs) pose a potential risk to ecological safety and human health. They have a range of effects on plant growth and there have been few reports on the health risks associated with ingestion of vegetable crops at different growth stages. Methodology In this study, a pot experiment in which Chinese cabbage (Brassica campestris L.) were grown in a greenhouse for 75 days was used to investigate the dose–effect relationship of pyrene with plant growth and also the exposure risk for adults of ingestion of Chinese cabbage at different growth stages. Results The results showed that low doses of pyrene (5–45 mg kg−1) promoted plant growth (20–220% and 55–97% higher than control treatment for the root biomass and shoot biomass, respectively), but significant inhibition was observed at a high dose (405 mg kg−1) (41–66% and 43–91% lower than control treatment for the root biomass and shoot biomass, respectively). High doses of pyrene reduced soil bacterial abundance and diversity during the growth of Chinese cabbage, and increased malondialdehyde (MDA) levels in the plant. The effects of pyrene on plant biomass were mainly attributed to changes in root activity induced by pyrene, as the relationship between soil pyrene concentration and biomass was similar to that between soil pyrene concentration and root activity. Furthermore, structural equation modeling analysis showed that pyrene altered growth of the vegetable by directly affecting root activity. The incremental lifetime cancer risk for adults is highest for ingestion of Chinese cabbage at the seedling stage, followed in decreasing order by the rosette stages and heading stages. Conclusions The health risk of consumers who have the possibility to ingest the Chinese cabbage planted in pyrene-contaminated soil would be decreased with the increasing growth periods. However, further studies are required to confirm the dose–effect relationship between pyrene concentration and Chinese cabbage growth on a field scale. Graphical Abstract


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2556
Author(s):  
Jinnan Song ◽  
Jingli Yang ◽  
Byoung Ryong Jeong

Plants grow better when they are supplied with a combination of ammonium (NH4+) and nitrate (NO3−) than when either one is supplied as the sole N (nitrogen) source. However, the effects of N forms on N metabolism and major N assimilation enzymes in different plants, especially vegetables, are largely neglected. This study was conducted on two plants with distinct NH4+ tolerances to compare the responses of two popular leafy vegetables, Korean cabbage (Brassica campestris L.) ‘Ssamchu’ and lettuce (Lactuca sativa L.) ‘Caesar green’, to the N source. To this end, plant growth and quality, photosynthesis, carbohydrate, N contents (in the forms of NO3−, NO2−, NH4+, total protein), and key N assimilation-related enzyme (NR, NIR, GS, GDH) activities were investigated. When plants were subjected to one of three NH4+:NO3− regimes, 0:100, 50:50, or 100:0, lettuce was relatively more tolerant while cabbage was extremely sensitive to high NH4+. Both plants benefited more from being grown with 50:50 NH4+:NO3−, as evidenced by the best growth performance, ameliorated photosynthesis, and enriched carbohydrate (C) stock content. In addition, as compared to cabbage, the GS and GDH activities were reinforced in lettuce in response to an increasing external NH4+ level, resulting in low NH4+ accumulation. Our findings suggested that boosting or maintaining high GS and GDH activities is an important strategy for the ammonium tolerance in vegetables.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kedar Devkota ◽  
Prashant Rijal ◽  
Charles Fernando dos Santos

Many pollination-dependent crops worldwide need bees for the highest productivity. If the crops are not pollinated, a pollination deficit will result. Consequently, low yields of fruit set and seed set of cultivated plants may be expected. Here, we evaluated how pollination with honeybee (Apis mellifera) hives may affect the production of the bittergourd (Momordica charantia), buckwheat (Fagopyrum esculentum), and mustard (Brassica campestris) in tons or quintal per hectare in Nepal. Our experimental design involved three treatments in blocks within selected areas: (i) the effect of the honeybees alone (caged with beehives), (ii) free insect access under natural field conditions, and (iii) blocks restraining insect access (caged without beehives). We also assessed the flower visiting insects within crops using pan traps and identifying insect orders. We found that the productivity of bittergourd, buckwheat, and mustard significantly increased in the treatments with beehives inside the cage. To a lesser extent, the treatment with free access to the flying insects enhanced the production of the selected crops. Proportionally, Hymenoptera (mainly bees) was the most common taxon within bittergourd, buckwheat, and mustard crops, followed by Diptera and Lepidoptera. Hence, the provision of beehives in cultivated areas such as those evaluated here could be considered as a complementary strategy for supporting the long-term productivity of these crops in Nepal.


Sign in / Sign up

Export Citation Format

Share Document