scholarly journals Interpopulation variation in pollinators and floral scent of the lady’s-slipper orchid Cypripedium calceolus L.

2017 ◽  
Vol 11 (3) ◽  
pp. 363-379 ◽  
Author(s):  
Herbert Braunschmid ◽  
Bernadette Mükisch ◽  
Thomas Rupp ◽  
Irmgard Schäffler ◽  
Pietro Zito ◽  
...  
Diversity ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Herbert Braunschmid ◽  
Robin Guilhot ◽  
Stefan Dötterl

Floral scent is an important trait in plant–pollinator interactions. It not only varies among plant species but also among populations within species. Such variability might be caused by various non–selective factors, or, as has been shown in some instances, might be the result of divergent selective pressures exerted by variable pollinator climates. Cypripedium calceolus is a Eurasian deceptive orchid pollinated mainly by bees, which spans wide altitudinal and latitudinal gradients in mainly quite isolated populations. In the present study, we investigated whether pollinators and floral scents vary among different latitudes. Floral scents of three C. calceolus populations in the Southern Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). These data were completed by previously published scent data of the Northern Alps and Scandinavia. The scent characteristics were compared with information on pollinators recorded for present study or available in the literature. More than 80 scent compounds were overall recorded from plants of the three regions, mainly aliphatics, terpenoids, and aromatics. Seven compounds were found in all samples, and most samples were dominated by linalool and octyl acetate. Although scents differed among regions and populations, the main compounds were similar among regions. Andrena and Lasioglossum species were the main pollinators in all three regions, with Andrena being relatively more abundant than Lasioglossum in Scandinavia. We discuss natural selection mediated by pollinators and negative frequency–dependent selection as possible reasons for the identified variation of floral scent within and among populations and regions.


2014 ◽  
Vol 36 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Maciej Korczyński ◽  
Ewa Krasicka-Korczyńska

Abstract Cypripedium calceolus is considered an endangered species in the territory of Poland. Population of this rare species, situated at Lake Kwiecko (Western Pomerania), was regularly monitored in the years 1986-2013. The studied population has been under the permanent influence of the nearby hydroelectric power plant for almost 45 years. The field observations showed that the power plant had no negative impact on the condition of Cypripedium calceolus population. An indication of its good condition was, among others, an increase in the size - from 150 to 350 specimens within the study period.


2020 ◽  
Vol 11 ◽  
Author(s):  
Herbert Braunschmid ◽  
Stefan Dötterl

Floral scent, a key mediator in plant–pollinator interactions, varies not only among plant species, but also within species. In deceptive plants, it is assumed that variation in floral scents and other traits involved in pollinator attraction is maintained by negative frequency-dependent selection, i.e., rare phenotypes are more attractive to pollinators and hence, have a higher fitness than common phenotypes. So far, it is unknown whether the rarity of multivariate and/or continuous floral scent traits influences the pollination success of flowers. Here, we tested in the deceptive orchid Cypripedium calceolus, whether flowers with rarer scent bouquets within a population have a higher chance to getting pollinated than flowers with more common scents. We collected the scent of more than 100 flowers in two populations by dynamic headspace and analyzed the samples by gas chromatography coupled to mass spectrometry (GC/MS). From the same flowers we also recorded whether they set a fruit or not. We introduced rarity measures of uni- and multivariate floral scent traits for single flowers, which allowed us to finally test for frequency-dependent pollination, a prerequisite for negative frequency-dependent selection. Our results do not show rarity has an effect on the likelihood to set fruits in neither of the two populations and in none of the scent characteristics analyzed. Hence, there is no evidence of negative frequency-dependent pollination mediated by the floral scent of C. calceolus. We discuss that our approach to determine rarity of a scent is applicable to any univariate or multivariate (semi)quantitative trait.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 940
Author(s):  
Marcin Górniak ◽  
Anna Jakubska-Busse ◽  
Marek S. Ziętara

The lady’s slipper orchid (Cypripedium calceolus), which inhabits shady deciduous and mixed forests and meadows, is now threatened with extinction in many European countries, and its natural populations have been dramatically declining in recent years. Knowledge of its evolutionary history, genetic variability, and processes in small populations are therefore crucial for the species’ protection. Nowadays, in south-west Poland, it is only distributed in seven small remnant and isolated populations, which we examined. One nuclear (ITS rDNA) and two plastid (accD-psa1, trnL-F) markers were analyzed and compared globally in this study. Based on the nuclear marker, the most common ancestor of C. calceolus and Cypripedium shanxiense existed about 2 million years ago (95% HPD: 5.33–0.44) in Asia. The division of the C. calceolus population into the European and Asian lineages indicated by C/T polymorphism started about 0.5 million years ago (95% HPD: 1.8–0.01). The observed variation of plastid DNA, which arose during the Pleistocene glacial–interglacial cycles, is still diffuse in Poland. Its distribution is explained by the result of fragmentation or habitat loss due to human impact on the environment.


2009 ◽  
Vol 27 (4) ◽  
pp. 266-273 ◽  
Author(s):  
Alexandre Antonelli ◽  
C. Johan Dahlberg ◽  
Kaisa H. I. Carlgren ◽  
Thomas Appelqvist

2012 ◽  
Vol 81 (2) ◽  
pp. 103-110
Author(s):  
Tomasz Przybyłowicz ◽  
Peter Roessingh ◽  
Astrid T. Groot ◽  
J.C. (Koos) Biesmeijer ◽  
J.G.B. (Gerard) Oostermeijer ◽  
...  

Pollination based on insect deception has been debated in the scientific community since it was first reported over two hundred years ago. A vast majority of deceptive syndromes occur within the orchid family. While many cheating flowers have been described and are well known, there are still many curious cases that need further investigation. One prime example of such a case is Cypripedium calceolus, known as European lady’s slipper orchid. While the flower has been of interest to many prominent scientists for over a century, its pollination is still not fully understood. Both visual and olfactory cues seem to play an important role in pollinator attraction. In this study we focussed on the olfactory cues in order to explore their relationship (in future experiments) with floral visual cues, including the unique asymmetry of these flowers. Some of the plants’ floral fragrances were used in Electroantennography experiments. Eleven chemical compounds were applied to the antennae of Bombus terrestris and Apis mellifera. Even though these species are not regular visitors of C. calceolus, we were interested to see whether there were common principles in their responses to the flowers’ scent that might justify extrapolating to other pollinator species such as sand bees that get trapped in these orchids and fly out of the flowers afterwards with pollen smeared on their body. The results show that while both species react similarly to most of the odours, some of the tested acetates induced a significantly greater reaction in B. terrestris antennae. These acetates play an important role in bumblebee pheromones, but their relevance for the natural pollinators of C. calceolus remains to be confirmed to see whether chemical mimicry by these flowers is deliberately employed to attract pollinators.


Sign in / Sign up

Export Citation Format

Share Document