scholarly journals Genetic History of the Remnant Population of the Rare Orchid Cypripedium calceolus Based on Plastid and Nuclear rDNA

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 940
Author(s):  
Marcin Górniak ◽  
Anna Jakubska-Busse ◽  
Marek S. Ziętara

The lady’s slipper orchid (Cypripedium calceolus), which inhabits shady deciduous and mixed forests and meadows, is now threatened with extinction in many European countries, and its natural populations have been dramatically declining in recent years. Knowledge of its evolutionary history, genetic variability, and processes in small populations are therefore crucial for the species’ protection. Nowadays, in south-west Poland, it is only distributed in seven small remnant and isolated populations, which we examined. One nuclear (ITS rDNA) and two plastid (accD-psa1, trnL-F) markers were analyzed and compared globally in this study. Based on the nuclear marker, the most common ancestor of C. calceolus and Cypripedium shanxiense existed about 2 million years ago (95% HPD: 5.33–0.44) in Asia. The division of the C. calceolus population into the European and Asian lineages indicated by C/T polymorphism started about 0.5 million years ago (95% HPD: 1.8–0.01). The observed variation of plastid DNA, which arose during the Pleistocene glacial–interglacial cycles, is still diffuse in Poland. Its distribution is explained by the result of fragmentation or habitat loss due to human impact on the environment.

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1001
Author(s):  
Zhiqing Xue ◽  
Josef Greimler ◽  
Ovidiu Paun ◽  
Kerry Ford ◽  
Michael H. J. Barfuss ◽  
...  

The contrasting evolutionary histories of endemic versus related cosmopolitan species provide avenues to understand the spatial drivers and limitations of biodiversity. Here, we investigated the evolutionary history of three New Zealand endemic Deschampsia species, and how they are related to cosmopolitan D. cespitosa. We used RADseq to test species delimitations, infer a dated species tree, and investigate gene flow patterns between the New Zealand endemics and the D. cespitosa populations of New Zealand, Australia and Korea. Whole plastid DNA analysis was performed on a larger worldwide sampling. Morphometrics of selected characters were applied to New Zealand sampling. Our RADseq review of over 55 Mbp showed the endemics as genetically well-defined from each other. Their last common ancestor with D. cespitosa lived during the last ten MY. The New Zealand D. cespitosa appears in a clade with Australian and Korean samples. Whole plastid DNA analysis revealed the endemics as members of a southern hemisphere clade, excluding the extant D. cespitosa of New Zealand. Both data provided strong evidence for hybridization between D. cespitosa and D. chapmanii. Our findings provide evidence for at least two migration events of the genus Deschampsia to New Zealand and hybridization between D. cespitosa and endemic taxa.


Author(s):  
Sara Fuentes-Soriano ◽  
Elizabeth A. Kellogg

Physarieae is a small tribe of herbaceous annual and woody perennial mustards that are mostly endemic to North America, with its members including a large amount of variation in floral, fruit, and chromosomal variation. Building on a previous study of Physarieae based on morphology and ndhF plastid DNA, we reconstructed the evolutionary history of the tribe using new sequence data from two nuclear markers, and compared the new topologies against previously published cpDNA-based phylogenetic hypotheses. The novel analyses included ca. 420 new sequences of ITS and LUMINIDEPENDENS (LD) markers for 39 and 47 species, respectively, with sampling accounting for all seven genera of Physarieae, including nomenclatural type species, and 11 outgroup taxa. Maximum parsimony, maximum likelihood, and Bayesian analyses showed that these additional markers were largely consistent with the previous ndhF data that supported the monophyly of Physarieae and resolved two major clades within the tribe, i.e., DDNLS (Dithyrea, Dimorphocarpa, Nerisyrenia, Lyrocarpa, and Synthlipsis)and PP (Paysonia and Physaria). New analyses also increased internal resolution for some closely related species and lineages within both clades. The monophyly of Dithyrea and the sister relationship of Paysonia to Physaria was consistent in all trees, with the sister relationship of Nerisyrenia to Lyrocarpa supported by ndhF and ITS, and the positions of Dimorphocarpa and Synthlipsis shifted within the DDNLS Clade depending on the employed data set. Finally, using the strong, new phylogenetic framework of combined cpDNA + nDNA data, we discussed standing hypotheses of trichome evolution in the tribe suggested by ndhF.


2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2020 ◽  
Vol 61 (6) ◽  
pp. 1107-1119
Author(s):  
Jan Kuciński ◽  
Sebastian Chamera ◽  
Aleksandra Kmera ◽  
M Jordan Rowley ◽  
Sho Fujii ◽  
...  

Abstract RNase H1 is an endonuclease specific toward the RNA strand of RNA:DNA hybrids. Members of this protein family are present in most living organisms and are essential for removing RNA that base pairs with DNA. It prevents detrimental effects of RNA:DNA hybrids and is involved in several biological processes. Arabidopsis thaliana has been previously shown to contain three genes encoding RNase H1 proteins that localize to three distinct cellular compartments. We show that these genes originate from two gene duplication events. One occurred in the common ancestor of dicots and produced nuclear and organellar RNase H1 paralogs. Second duplication occurred in the common ancestor of Brassicaceae and produced mitochondrial- and plastid-localized proteins. These proteins have the canonical RNase H1 activity, which requires at least four ribonucleotides for endonucleolytic digestion. Analysis of mutants in the RNase H1 genes revealed that the nuclear RNH1A and mitochondrial RNH1B are dispensable for development under normal growth conditions. However, the presence of at least one organellar RNase H1 (RNH1B or RNH1C) is required for embryonic development. The plastid-localized RNH1C affects plastid DNA copy number and sensitivity to replicative stress. Our results present the evolutionary history of RNH1 proteins in A. thaliana, demonstrate their canonical RNase H1 activity and indicate their role in early embryonic development.


Author(s):  
Francisco Prosdocimi ◽  
Sávio Torres de Farias

Genes and gene trees have been extensively used to study the evolutionary relationships among populations, species, families and higher systematic clades of organisms. This brought modern Biology into a sophisticated level of understanding about the evolutionary relationships and diversification patterns that happened along the entire history of organismal evolution in Earth. Genes however have not been placed in the center of questions when one aims to unravel the evolutionary history of genes themselves. Thus, we still ignore whether Insulin share a more recent common ancestor to Hexokinase or DNA polymerase. This brought modern Genetics into a very poor level of understanding about sister group relationships that happened along the entire evolutionary history of genes. Many conceptual challenges must be overcome to allow this broader comprehension about gene evolution. Here we aim to clear the intellectual path in order to provide a fertile research program that will help geneticists to understand the deep ancestry and sister group relationships among different gene families (or orthologs). We aim to propose methods to study gene formation starting from the establishment of the genetic code in pre-cellular organisms like the FUCA (First Universal Common Ancestor) until the formation of the highly complex genome of LUCA (Last UCA), that harbors hundreds of genes families working coordinated into a cellular organism. The deep understanding of ancestral relationships among orthologs will certainly inspire biotechnological and biomedical approaches and allow a deep understanding about how Darwinian molecular evolution operates inside cells and before the appearance of cellular organisms.


Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

AbstractCereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by “emetic B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) alongside their closely related ces-negative counterparts to (i) assess the genomic diversity encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive Group III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor cereulide-producing strains, all of which share a common ancestor incapable of producing cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness).Importance“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that “emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2021 ◽  
Author(s):  
Stéphane Peyrégne ◽  
Janet Kelso ◽  
Benjamin Marco Peter ◽  
Svante Pääbo

Proteins associated with the spindle apparatus, a cytoskeletal structure that ensures the proper segregation of chromosomes during cell division, experienced an unusual number of amino acid substitutions in modern humans after the split from the ancestors of Neandertals and Denisovans. Here, we analyze the history of these substitutions and show that some of the genes in which they occur may have been targets of positive selection. We also find that the two changes in the kinetochore scaffold 1 (KNL1) protein, previously believed to be specific to modern humans, were present in some Neandertals. We show that the KNL1 gene of these Neandertals shared a common ancestor with present-day Africans about 200,000 years ago due to gene flow from the ancestors (or relatives) of modern humans into Neandertals. Subsequently, some non-Africans inherited this modern human-like gene variant from Neandertals, but none inherited the ancestral gene variants. These results add to the growing evidence of early contacts between modern humans and archaic groups in Eurasia and illustrate the intricate relationships among these groups.


2019 ◽  
Author(s):  
Andrew D. Foote ◽  
Michael D. Martin ◽  
Marie Louis ◽  
George Pacheco ◽  
Kelly M. Robertson ◽  
...  

AbstractReconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global dataset of killer whale genomes in a rare attempt to elucidate global population structure in a non-human species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species’ range, likely associated with founder effects and allelic surfing during post-glacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dayana E. Salas-Leiva ◽  
Eelco C. Tromer ◽  
Bruce A. Curtis ◽  
Jon Jerlström-Hultqvist ◽  
Martin Kolisko ◽  
...  

AbstractCells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


2020 ◽  
Author(s):  
Sumanth Kumar Mutte ◽  
Dolf Weijers

ABSTRACTProtein oligomerization is a fundamental process to build complex functional modules. Domains that facilitate the oligomerization process are diverse and widespread in nature across all kingdoms of life. One such domain is the Phox and Bem1 (PB1) domain, which is functionally (relatively) well understood in the animal kingdom. However, beyond animals, neither the origin nor the evolutionary patterns of PB1-containing proteins are understood. While PB1 domain proteins have been found in other kingdoms, including plants, it is unclear how these relate to animal PB1 proteins.To address this question, we utilized large transcriptome datasets along with the proteomes of a broad range of species. We discovered eight PB1 domain-containing protein families in plants, along with three each in Protozoa and Chromista and four families in Fungi. Studying the deep evolutionary history of PB1 domains throughout eukaryotes revealed the presence of at least two, but likely three, ancestral PB1 copies in the Last Eukaryotic Common Ancestor (LECA). These three ancestral copies gave rise to multiple orthologues later in evolution. Tertiary structural models of these plant PB1 families, combined with Random Forest based classification, indicated family-specific differences attributed to the length of PB1 domain and the proportion of β-sheets.This study identifies novel PB1 families and reveals considerable complexity in the protein oligomerization potential at the origin of eukaryotes. The newly identified relationships provide an evolutionary basis to understand the diverse functional interactions of key regulatory proteins carrying PB1 domains across eukaryotic life.


Sign in / Sign up

Export Citation Format

Share Document