Behavioral responses of Frankliniella occidentalis to floral volatiles combined with different background visual cues

2017 ◽  
Vol 12 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Yu Cao ◽  
Junrui Zhi ◽  
Can Li ◽  
Runzhi Zhang ◽  
Chun Wang ◽  
...  
Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 177 ◽  
Author(s):  
Xiaoyun Ren ◽  
Shengyong Wu ◽  
Zhenlong Xing ◽  
Ruirui Xu ◽  
Wanzhi Cai ◽  
...  

Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is a highly invasive pest, infesting many species of plants worldwide, but few studies have investigated the visual and olfactory cues associated with their foraging behaviors. In this study, the distance traveled by WFT to locate yellow cards using only visual cues and visual cues plus olfactory cues was studied first. Subsequently, preferences for colors (white, red, green, purple, yellow and blue) and patterns (triangle, rectangle, circle and flower-shape) over short distances were assessed with free-choice tests. Finally, as yellow was the most efficient color to catch WFT under laboratory conditions, the yellow flower-shape was used as the visual cue, and preferences between visual and olfactory cues were evaluated with dual choice tests. The results showed that the capture rate of WFT by visual cues decreased as selection distance increased, however capture rate remained higher with the addition of olfactory cues. The flower shape attracted the greatest number of WFT among all shapes tested. The combination of visual cues and extracted volatiles from flowering Medicago sativa L. attracted higher numbers of WFT than to the olfactory cues alone, however these were similar to visual cues alone. The presence of olfactory cues resulted in higher residence times by WFT than did the absence of olfactory cues. These results show the relative effects of visual and olfactory cues on the orientation of WFT to hosts and highlight that visual cues dominate selection behavior at short distances. These findings can be used in the development of efficient trapping products and management strategies for thrips.


2014 ◽  
Vol 152 (3) ◽  
pp. 248-257 ◽  
Author(s):  
Pan Wang ◽  
Na Zhang ◽  
Li-Lin Zhou ◽  
Sheng-Yun Si ◽  
Chao-Liang Lei ◽  
...  

Author(s):  
Xiao-Wei Li ◽  
Zhi-Jun Zhang ◽  
Muhammad Hafeez ◽  
Jun Huang ◽  
Jin-Ming Zhang ◽  
...  

Abstract A number of thrips species are among the most significant agricultural pests globally. Use of repellent intercrop plants is one of the key components in plant-based ‘push–pull’ strategies to manage pest populations. In this study, the behavioral responses of three thrips species, Frankliniella occidentalis (Pergande), Frankliniella intonsa (Trybom), and Thrips palmi Karny (Thysanoptera: Thripidae) to Rosmarinus officinalis were investigated in Y-tube olfactometer bioassays and cage experiments. In addition, the major volatile compounds from rosemary were identified and the effect of the individual compounds on thrips behavior was evaluated. Females and males of the three thrips species were significantly repelled by the volatiles from cut rosemary leaves. The presence of rosemary plants significantly reduced settlement of females of the three thrips species and eggs laid by F. occidentalis females on target host plants. In total, 47 compounds were identified in the volatiles collected from the cut leaves of rosemary plants. The responses of the three thrips species to 10 major volatile compounds showed significant differences. However, α-pinene, the most abundant volatile, was repellent to F. occidentalis and F. intonsa. Eucalyptol, the second most abundant volatile, showed significant repellent activity to all the three thrips species. Our findings showed that rosemary is a promising repellent plant against the three thrips pests we tested, which could be a good candidate for ‘push’ plants in plant-based ‘push–pull’ strategies. The identified volatile compounds that accounted for the repellent activity could be developed as repellents for sustainable thrips management.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 408
Author(s):  
Yu Cao ◽  
Jie Wang ◽  
Giacinto Salvatore Germinara ◽  
Lijuan Wang ◽  
Hong Yang ◽  
...  

Thrips hawaiiensis is a common thrips pest of various plant flowers with host preference. Plant volatiles provide important information for host-searching in insects. We examined the behavioral responses of T. hawaiiensis adults to the floral volatiles of Gardenia jasminoides Ellis, Gerbera jamesonii Bolus, Paeonia lactiflora Pallas, and Rosa chinensis Jacq. in a Y-tube olfactometer. T. hawaiiensis adults showed significantly different preferences to these four-flower plants, with the ranking of G. jasminoides > G. jamesonii > P. lactiflora ≥ R. chinensis. Further, 29 components were identified in the volatile profiles of G. jasminoides, and (Z)-3-hexenyl tiglate (14.38 %), linalool (27.45 %), and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (24.67 %) were the most abundant. Six-arm olfactometer bioassays showed that T. hawaiiensis had significant positive responses to (Z)-3-hexenyl tiglate, linalool, and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene tested at various concentrations, with the most attractive ones being 10−3 μL/μL, 10−2 μL/μL and 100 μg/μL for each compound, respectively. In pairing of these three compounds at their optimal concentrations, T. hawaiiensis showed the preference ranking of (Z)-3-hexenyl tiglate > linalool > (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene. Large numbers of T. hawaiiensis have been observed on G. jasminoides flowers in the field, which might be caused by the high attraction of this pest to G. jasminoides floral volatiles shown in the present study. Our findings shed light on the olfactory cues routing host plant searching behavior in T. hawaiiensis, providing important information on how T. hawaiiensis targets particular host plants. The high attractiveness of the main compounds (e.g., linalool, (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, particular (Z)-3-hexenyl tiglate) identified from volatiles of G. jasminoides flowers may be exploited further to develop novel monitoring and control tools (e.g., lure and kill strategies) against this flower-inhabiting thrips pest.


Sign in / Sign up

Export Citation Format

Share Document