phototactic behavior
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Broox G V Boze ◽  
Kelsey Renfro ◽  
Daniel Markowski ◽  
Saul Lozano-Fuentes

Abstract To evaluate whether the presence of clear incandescent light was attractive or refractive to host-seeking mosquitoes in northern Colorado, a Bayesian hierarchical model was created to measure differences in trap effectiveness based on presence or absence of phototactic cues. A total of eight CDC miniature light traps (with and without light) were set weekly across four locations in northern Colorado between Weeks 23 and 32 of year 2020. Culex mosquitoes (Diptera: Culicidae) accounted for 81% of all collections in this study with two vectors of West Nile virus being represented. The probability of catching both Culex tarsalis Coquillett and Culex pipiens Linnaeus was reduced when traps were equipped with light, but the difference was not statistically significant for Culex tarsalis. The clear reduction in the number of Culex pipiens caught when these traps were equipped with light indicates negative phototactic behavior and underestimation with current surveillance strategies. Removal of light from these traps may aid our understanding of these species’ distribution within the environment, improve collection efficiency, and help guide implementation of targeted control measures used in public health mosquito control.


2021 ◽  
Vol 118 (33) ◽  
pp. e2107695118
Author(s):  
Vivien Hotter ◽  
David Zopf ◽  
Hak Joong Kim ◽  
Anja Silge ◽  
Michael Schmitt ◽  
...  

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pengjun Xu ◽  
Bin Lu ◽  
Jiangtao Chao ◽  
Robert Holdbrook ◽  
Gemei Liang ◽  
...  

AbstractBackgroundColor vision and phototactic behavior based on opsins are important for the fitness of insects because of their roles in foraging and mate choice. Related topics, including the duplication and loss of opsin genes, have been well investigated in insect orders such as Coleoptera, Lepidoptera, Hymenoptera, Odonata and Orthoptera, and the findings have been used to develop pest management strategies involving light trapping. Mirid bugs of Hemiptera, which are pests that cause heavy economic losses, show capacity for color discrimination and phototaxis. However, the opsins in mirid bugs remain uncharacterized. Herein, we examined five species to investigate the evolution of opsins in the family Miridae.ResultsUsing RNA-seq, we identified several contigs showing high identity with opsins, including four contigs inApolygus lucorumand three contigs each inAdelphocoris suturalis,Adelphocoris fasciaticollis,Adelphocoris lineolatusandNesidiocoris tenuis. Phylogenetic analyses indicated that one of these genes clustered with ultraviolet-sensitive (UV) opsins and that the others clustered with long-wavelength (LW) opsins, suggesting that duplication of LW opsins and loss of blue light-sensitive (B) opsins occurred in mirid bugs. The existence of introns in the LW opsins of mirid bugs suggested that the duplication events were DNA based. Both LW1 and LW2 opsins of mirid bugs were found to be under strong purifying selection. The LW1 opsins were significantly more highly expressed than the LW2 and UV opsins.ConclusionsWe identified the opsins of mirid bugs using five selected mirid species as a representative sample. Phylogenetic analyses clustered one of the genes with UV opsins and the others with LW opsins, suggesting the occurrence of LW opsin duplication and B opsin loss during the evolution of mirid bugs. Intron detection suggested that the identified duplication event was DNA based. The evidence of strong purifying selection and the relatively high expression levels suggested that these opsins exhibit fundamental functions in mirid bugs.


Author(s):  
Alex B. Chen ◽  
Diptodip Deb ◽  
Armin Bahl ◽  
Florian Engert

To thrive, organisms must maintain physiological and environmental variables in suitable ranges. Given that these variables undergo constant fluctuations over varying timescales, how do biological control systems maintain control over these values? We explored this question in the context of phototactic behavior in larval zebrafish. We demonstrate that larval zebrafish use phototaxis to maintain environmental luminance at a set point, that the value of this set point fluctuates on a timescale of seconds when environmental luminance changes, and that it is determined by calculating the mean input across both sides of the visual field. These results expand on previous studies of flexible phototaxis in larval zebrafish; they suggest that larval zebrafish exert homeostatic control over the luminance of their surroundings, and that feedback from the surroundings drives allostatic changes to the luminance set point. As such, we describe a novel behavioral algorithm with which larval zebrafish exert control over a sensory variable.


2021 ◽  
Author(s):  
Vivien Hotter ◽  
David Zopf ◽  
Hak Joong Kim ◽  
Anja Silge ◽  
Michael Schmitt ◽  
...  

Microalgae are key contributors to global carbon fixation and the basis of many food webs. In nature, their growth is often supported or suppressed by other microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology. Using a combination of Raman microspectroscopy, genome mining and mutational analysis, we discovered a novel polyyne toxin we name protegencin that is secreted by P. protegens and penetrates algal cells to destroy their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin prevents the phototactic behavior of C. reinhardtii needed to perform optimal photosynthesis. A protegencin-deficient biosynthetic mutant of P. protegens does not affect growth or eyespot carotenoids of C. reinhardtii. Thus, protegencin acts in a direct and destructive way, and reveals at least a two-pronged molecular strategy used by algicidal bacteria.


2020 ◽  
Vol 23 (4) ◽  
pp. 1181-1187
Author(s):  
Hajar Fakhari ◽  
Javad Karimzadeh ◽  
Saeid Moharramipour ◽  
Ali Ahadiyat ◽  
Davoud Doranian

2020 ◽  
Vol 367 (17) ◽  
Author(s):  
Haitao Chen ◽  
Dandan Li ◽  
Yao Cai ◽  
Long-Fei Wu ◽  
Tao Song

ABSTRACT Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.


2020 ◽  
Author(s):  
Aziz J Mulla ◽  
Che-Hung Lin ◽  
Shunichi Takahashi ◽  
Yoko Nozawa

AbstractControlling vertical positioning is a key factor limiting the distance coral larvae can travel, as oceanic currents are faster closer to surface. Currently, the vertical position of coral larvae is assumed to be determined by buoyant, lipid-rich gametes. However, here we show that some, but not all, coral species can control vertical positioning by phototaxis. We first examined the effect of light on the vertical positioning of larvae from five different coral species in the laboratory. We found that larvae from P. verrucosa, but not from other coral species, show phototaxis towards light and accumulate near the surface. This behavior was consistent at any age and at any time during the day. In field experiments, using P. verrucosa larvae at three different depths (1, 7 and 15 m), the accumulation of larvae in the top half of transparent chambers was observed at all depths. However, such behavior failed to occur in dark chambers. We conclude that larvae from P. verrucosa, but not all coral species, accumulate close to the seawater surface as a result of actively swimming towards sunlight. This finding provides a new hypothesis that phototactic behavior is a key factor in regulating vertical positioning for the dispersal of coral larvae.


2020 ◽  
Author(s):  
Alex B. Chen ◽  
Diptodip Deb ◽  
Armin Bahl ◽  
Florian Engert

SUMMARYTo thrive, organisms must maintain physiological and environmental variables in optimal ranges. However, in a dynamic world, the optimal range of a variable might fluctuate depending on the organism’s state or environmental conditions. Given these fluctuations, how do biological control systems maintain optimal control of physiological and environmental variables? We explored this question by studying the phototactic behavior of larval zebrafish. We demonstrate, with behavioral experiments and computational modeling, that larval zebrafish use phototaxis to maintain environmental luminance at a set point that depends on luminance history. We further show that fish compute this set point using information from both eyes, and that the set point fluctuates on a timescale of seconds when environmental luminance changes. These results expand on previous studies, where phototaxis was found to be primarily positive, and suggest that larval zebrafish, rather than consistently turning towards the brighter areas, exert homeostatic control over the luminance of their surroundings. Furthermore, we show that fluctuations in the surrounding luminance feed back on the system to drive allostatic changes to the luminance set point. Our work has uncovered a novel principle underlying phototaxis in larval zebrafish and characterized a behavioral algorithm by which larval zebrafish exert control over a sensory variable.


Sign in / Sign up

Export Citation Format

Share Document