A Review of Quantitative Phase-Field Crystal Modeling of Solid–Liquid Structures

JOM ◽  
2014 ◽  
Vol 67 (1) ◽  
pp. 186-201 ◽  
Author(s):  
Ebrahim Asadi ◽  
Mohsen Asle Zaeem
2015 ◽  
Vol 92 (1) ◽  
Author(s):  
Can Guo ◽  
Jincheng Wang ◽  
Zhijun Wang ◽  
Junjie Li ◽  
Yaolin Guo ◽  
...  

2018 ◽  
Vol 15 ◽  
pp. 97-127
Author(s):  
Yun Chen ◽  
Na Min Xiao ◽  
Dian Zhong Li ◽  
Tong Zhao Gong ◽  
Henri Nguyen-Thi

Directional solidification is a paradigm process to gain the desired microstructure via certain applied solidification parameters. A thorough understanding of the diffusion-limited solid-liquid interface morphology evolution from initial transient to steady state is of uppermost importance to optimize the solidification processes. The rapid development of quantitative phase-field model provides a feasible computational tool to explore the underlying physics of the morphological transition at different stages. On basis of the diffusion-limited quantitative phase-field simulations using adaptive finite element method, the directional solidification of Al-4wt.%Cu alloy is characterized and both the solid interface propagation speed and solute profile are analyzed. The simulations are then compared with the in situ and real-time observation by means of synchrotron radiation x-ray radiography image. Good agreements are obtained between simulations and experimental data. Detailed mechanism that controls the morphological instability and transition are then addressed.


Author(s):  
Nan Wang ◽  
Gabriel Kocher ◽  
Nikolas Provatas

We present a multiphase binary alloy phase-field-crystal model. By introducing density difference between solid and liquid into a previous alloy model, this new fusion leads to a practical tool that can be used to investigate formation of defects in late-stage alloy solidification. It is shown that this model can qualitatively capture the liquid pressure drop due to solidification shrinkage in confined geometry. With an inherited gas phase from a previous multiphase model, cavitation of liquid from shrinkage-induced pressure is also included in this framework. As a unique model that has both solute concentration and pressure-induced liquid cavitation, it also captures a modified Scheil–Gulliver-type segregation behaviour due to cavitation. Simulation of inter-dendritic channel solidification using this model demonstrates a strong cooling rate dependence of the resulting microstructure. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.


2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.


Sign in / Sign up

Export Citation Format

Share Document