A Sustainable and Selective Roasting and Water-Leaching Process to Simultaneously Extract Valuable Metals from Low-Grade Ni-Cu Matte

JOM ◽  
2018 ◽  
Vol 70 (10) ◽  
pp. 1977-1984 ◽  
Author(s):  
Fuhui Cui ◽  
Wenning Mu ◽  
Shuai Wang ◽  
Haixia Xin ◽  
Qian Xu ◽  
...  
2012 ◽  
Vol 19 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Xin-wei Liu ◽  
Ya-li Feng ◽  
Hao-ran Li ◽  
Zhi-chao Yang ◽  
Zhen-lei Cai

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1332
Author(s):  
Bongju Kim ◽  
Chulhyun Park ◽  
Kanghee Cho ◽  
Jaehyun Kim ◽  
Nagchoul Choi ◽  
...  

During the roasting of gold concentrate to improve gold recovery, arsenic is released into the air and valuable elements such as Fe, Cu, Zn, and Pb are converted into oxide minerals. In this research, we evaluated the release of As and the loss of valuable metals during the acid baking and hot water leaching processes used for gold concentrate. The acid bake tests were conducted for gold concentrate using an electric furnace by applying various concentrations of H2SO4 solution under different baking times. The water leaching process was enacted using 70 °C water for the baked samples. Chemical and mineral compositions of the raw and treated samples were analyzed using AAS and XRD, respectively. The results show that soluble metal sulfates, such as rhomboclase and mikasite, were formed in the baked samples, and that the leaching of valuable metals (Fe, Cu, Zn, and Pb) was accelerated during the hot water leaching procedure. During acid baking, arsenic was partially removed by volatilization, and the rest of the arsenic-containing minerals were converted to soluble minerals. The soluble arsenic-containing mineral resulted in a dissolution that was 60 times higher than in the roasted sample. The maximum gold grade of solid residues increased up to 33% through the acid baking–water leaching process. It was confirmed that acid baking with H2SO4 prevented As release into the air, as well as the recovery of valuable metals through hot water leaching, such as Fe, Cu, Zn, and Pb, which were formerly discarded in the tailings.


JOM ◽  
2019 ◽  
Vol 71 (12) ◽  
pp. 4647-4658 ◽  
Author(s):  
Wenning Mu ◽  
Zhipeng Huang ◽  
Haixia Xin ◽  
Shaohua Luo ◽  
Yuchun Zhai ◽  
...  

2021 ◽  
Author(s):  
Jialiang Zhang ◽  
Guoqiang Liang ◽  
Cheng Yang ◽  
Juntao Hu ◽  
Yongqiang Chen ◽  
...  

Inspired by the process of "metallurgy first and then beneficiation" for disposing low-grade and complex mineral resources, we proposed a breakthrough method to recover valuable metals from spent entire lithium-ion...


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 586
Author(s):  
Yunpeng Du ◽  
Xiong Tong ◽  
Xian Xie ◽  
Wenjie Zhang ◽  
Hanxu Yang ◽  
...  

Zinc-leaching residue (ZLR) is a strongly acidic hazardous waste; it has poor stability, high heavy metal levels, and releases toxic elements into the environment. ZLR has potential as a valuable resource, because it contains elevated levels of zinc and silver. In this paper, the recovery of zinc (Zn) and silver (Ag) from ZLR wastes from zinc hydrometallurgy workshops using water leaching followed by flotation was studied. During water leaching experiments, the zinc and copper recovery rates were 38% and 61%, respectively. Thereafter, various flotation testing parameters were optimized and included grinding time, reagent dosages, pulp density, flotation time, and type of adjuster. Experimental results demonstrated this flotation method successfully recycled Ag and Zn. A froth product containing more than 9256.41 g/t Ag and 12.26% Zn was produced from the ZLR with approximately 80.32% Ag and 42.88% Zn recoveries. The toxicity characteristic leaching procedure (TCLP) results indicated the water-leaching flotation process not only recycled valuable metals such as zinc and silver in zinc-containing hazardous wastes but lowered the hazardous waste levels to those of general wastes and recycled wastes in an efficient, economical, and environmentally friendly way.


Sign in / Sign up

Export Citation Format

Share Document