leaching experiments
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 64)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Liang Qi ◽  
Ling Li ◽  
Lin Yin ◽  
Wen Zhang

Abstract Carbon sources of cellulose plants are the promising materials that enhancing the activities of denitrifying bacteria in the groundwater system. To further verify the denitrification performance of cellulose plants and the main factors of affecting the denitrifying system, six cellulose plants from agricultural wastes (wood chip, corn cob, rice husk, corn straw, wheat straw, and sugar cane) were selected for bioavailable organic matter leaching experiments, carbon denitrification experiments, functional bacteria identification, and analysis experiments. The results show that the extracts of cellulose plants contain a mixed carbon sources system including small molecular organic acids, sugars, nitrogen-containing organic components, and esters. The qPCR results showed that the denitrifying bacteria had obvious advantages compare to anaerobic ammonia-oxidizing bacteria during the stable period; the denitrification experiment showed that each of six cellulose plants removed more than 80% of nitrogen, and the denitrification rates reached 1.00–2.00 mg N cm−3·d−1. The supplement of cellulose plants promotes the metabolism rate of denitrifying bacteria, and the additional denitrifying bacteria have little effect on nitrate removal. In summary, the expected denitrification reaction occurred in the cellulose plant system, which is suitable as a carbon source material for water body nitrogen pollution remediation.


2021 ◽  
Vol 11 (24) ◽  
pp. 12011
Author(s):  
Despina Vamvuka ◽  
Adamantia Raftogianni

The current study aimed at evaluating an untreated pig manure, firstly for its suitability for soil amendment in combination with an agricultural/bio-solid biochar, and secondly for its potential to be used for adsorption of hazardous species, replacing expensive activated carbons. Column soil leaching experiments were designed to simulate field conditions, and physical, chemical and mineralogical analyses were performed for raw materials and/or leachates. For activated carbon production, the manure was gasified by steam or carbon dioxide at high temperatures. Biochars were analyzed for organic and mineral matter, structural characteristics and organic functional groups. Activation by steam or carbon dioxide greatly enhanced specific surface area, reaching values of 231.4 and 233.3 m2/g, respectively. Application of manure to the soil promoted leaching of nitrates and phosphates and raised COD values of water extracts. Biochar addition retained these ions and reduced COD values up to 10 times at the end of the three-month period. The concentrations of heavy metals in the leachates were low and, in the presence of biochar in soil blends, they were significantly reduced by 50–70%. The manure presents a significant potential for adsorption of various pollutants or improvement of soil amendment if carefully managed.


Author(s):  
Ali Ekhlasi Nia ◽  
Harrison Bull ◽  
Mohsen Asadi ◽  
Kerry McPhedran

Wastewater stabilization ponds (WSPs) are commonly used to reduce wastewater metal(loid) concentrations from drinking water treatment plants (DWTPs) through sedimentation. However, this results in increased sediment concentrations that can be released back into the overlying water. Thus, our goal was to evaluate the WSP metal(loid)s occurrence and leaching potential. Currently, a Saskatchewan based DWTP’s WSP system was investigated given historically elevated effluent As and Fe concentrations. The WSP consists of five ponds that were sampled on six occasions in 2019 and 2020. In addition, sediments were used in laboratory-based experiments to determine their leaching potential. Overall, the sediments were found to contain elevated concentrations of As and Fe with 25 to 400 and 10,000 to 45,000 mg/kg, respectively. Leaching experiments indicated that the pond sediments could potentially release As and Fe with log Kd values ranging from 2.21 to 4.31 L/kg, while Fe ranged from 3.32 to 5.53 L/kg.


2021 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Bagani Maria ◽  
Balomenos Efthymios ◽  
Panias Dimitrios

The extensive consumption of aluminum, combined with the shortage of the existing raw materials, and particularly bauxite, necessitates the exploitation of alternative raw materials for the production of alumina. The present paper focuses on the possible use of kaolin, as an abundant, cheap and high-aluminum content raw material, in alumina production, via the application of the Aranda-Mastin technology in the leaching step. From this point of view, leaching experiments were conducted on untreated kaolin and thermally treated, metakaolin, applying atmospheric pressure, temperature of 90 °C and with an aqueous solution of a low HCl concentration as the leaching agent. Leaching, in the aforementioned conditions, is an industrially applied process, characterized by highly efficient aluminum dissolution in the case of metakaolin with low silicon dissolution at a short retention time, but with respectively lower achieved results for untreated kaolin. In order to raise the aluminum dissolution rate from untreated material, temporal and subsequently chemical intensification was applied. The analysis indicated a higher aluminum dissolution rate, up to 70%, with the application of a high acid concentration of leaching agent, performed for a long retention time that could be further improved.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1080
Author(s):  
Jinxia Zhang ◽  
Chao Yang ◽  
Fusheng Niu ◽  
Shuling Gao ◽  
Jiajing Dong

Molecular dynamics of the interaction between four metal oxides (ZnO, Fe2O3, Al2O3, and CaO) present in zinc-bearing dust sludge and choline chloride (ChCl)-malonic acid (MA)(1:2) was studied in this work using Materials Studio software. The interaction mechanism was revealed by analyzing the interaction energy and radial distribution function from the perspective of quantum mechanics, and the simulation results were verified by single factor leaching experiments. The calculation results show that the complete cleavage surface of the four metal oxides is the (001) surface, and ChCl-2MA forms a stable structure with multiple intermolecular hydrogen bonds centered on the chlorine atom. The dynamic simulation of the interaction model shows that strength of interaction between ChCl-2MA and the four metal oxides follows the order: ZnO > Fe2O3 > Al2O3 > CaO. ChCl-2MA mainly interacts with ZnO by chemical adsorption, while ChCl-2MA mainly interacts with Fe2O3, Al2O3, and CaO by physical adsorption. The radial distribution function shows that Cl in ChCl-2MA and C=O in MA form chemical bonds with Zn in ZnO, and the choline cation (Ch+) forms C-H···O with ZnO. Among these bonds, the Cl-Zn bond energy is stronger. During the interaction between ChCl-2MA and Fe2O3 and Al2O3, O-H···O and C-H···O are formed and interact with CaO by van der Waals force. Single factor leaching experiments show that, under the same leaching conditions, the leaching rate of ZnO by ChCl-2MA is greater than 90%, while the leaching rate of Fe2O3, Al2O3, and CaO is about 10%. These results indicate good selectivity of ChCl-2MA for ZnO in the zinc-bearing dust sludge. The above conclusions have important theoretical significance and provide an in-depth understanding of the leaching mechanisms of zinc-bearing dust sludge in deep eutectic solvents.


2021 ◽  
Vol 13 (19) ◽  
pp. 10851
Author(s):  
Yossif Dady ◽  
Roslan Ismail ◽  
Hamdan Jol ◽  
Fatai Arolu

A 45-day incubation and leaching experiments was conducted to determine the effect of different rates (0, 1, 2, 3, and 5 t ha−1) of enriched empty fruit bunches biochar (EEFB) and inorganic fertilizer (91 kg ha−1 triple superphosphate—TSP) on the availability and leaching losses of phosphorus from sandy soil (tin tailing soil). The treatments rates for the study were designated as T1—without fertilizer (control), T2—inorganic fertilizer treatment using TSP and T3, T4, T5, and T6, which refers to EEFB rate of 1, 2, 3, and 5 t ha−1, respectively. The enriched biochar was prepared by shaking biochar with chicken manure extract for 24 h. The addition of EEFB to the soils was found to increase pH of the soil compared to control and inorganic fertilizer treatment. After 45 days of incubation, the percentage increase in available P recorded in EEFB treatments were 1.6, 2.9, 2.8, and 4.1%, whereas for control treatment and inorganic fertilizer treatment, the available phosphorus was found to reduce by 10% and 83%, respectively. Loss of phosphorus via leaching in the soil was higher in EEFB treatments compared to control. However, the highest phosphorus leaching among all treatments in this study was recorded in inorganic fertilizer treatments. From the study, it was observed that biochar can be used to recapture phosphorus from chicken manure extract for transport to the soil, thereby reducing problems associated with chicken manure application.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1020
Author(s):  
Chan-Ung Kang ◽  
Seung-Eun Ji ◽  
Thomas Pabst ◽  
Kung-Won Choi ◽  
Moonis Ali Khan ◽  
...  

In this investigation, a laboratory-scale study to extract copper (Cu) from its oxide ore (0.425–11.2 mm particle size) was conducted using varied sulfuric acid (H2SO4) concentrations (0.05–0.5 M) as a lixiviant. Through a physicochemical and mineralogical analysis of real field ore samples from the Almalyk mine heap site (Tashkent, Uzbekistan), malachite was identified as a Cu-bearing mineral. Extraction rates were analyzed according to the ore particle size and acid concentration. The Cu extraction with the smallest particle size (in 24 h) varied between 76.7% and 94.26% at varied H2SO4 concentrations (0.05–0.5 M). Almost half (50%) of Cu was extracted from the ore within 4 and 72 h of contact time for 0.425–2 mm and 5.6–11.2 mm particle sizes, respectively, using 0.15 M H2SO4. Weeklong leaching experiments with 0.5 M H2SO4 revealed a higher copper extraction rate (≥73%) from coarse ore particles (5.6–11.2 mm). Along with the copper extraction, iron (29.6 wt%), aluminum (70.2 wt%), magnesium (85.4 wt%), and calcium (44.4 wt%) were also leached out considerably through the dissolution of silicate and carbonate gangue minerals. In this study, an 80.0–94.26% copper extraction rate with reduced acid consumption (20%) proved to be a cost-effective approach.


2021 ◽  
Author(s):  
Xuefang Tang ◽  
Yong Wu ◽  
Libi Han ◽  
Zhen Lan ◽  
Xingping Rong

Abstract Compared with water and air pollution, soil pollution is highly concealed, has poor self-purification ability, and has high risks associated with accumulation. Characteristics of heavy metal migration directly affect the quality of the environment, and comparative studies utilizing column leaching and natural leaching experiments have rarely been performed. In this study, we used farmland soil samples from Xiba Town in the Wutongqiao district to determine the differences in leaching characteristics between column leaching and natural leaching tests. The results indicate the following. (1)The release of heavy metals in soil is divided into two stages: the first stage is a rapid release period, while the leaching solution has an extremely low heavy metal concentrations during the second stage. The cumulative amount released during the second stage exhibits regular fluctuations, while the heavy metal release rate is consistent with the heavy metal adsorption properties of the soil. (2) The release and accumulation of heavy metals in the soil are influenced by many factors that may interact with each other, which leads to low correlations between the cumulative heavy metals released in the column leaching and natural leaching tests. Simulating natural heavy metal migration trends using the column leaching test is effective to some extent, but there are significant differences between the accumulation sites and accumulated amounts. This study provides a theoretical basis for improving the remediation of soil contaminated by heavy metals.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 734
Author(s):  
Maria Bagani ◽  
Efthymios Balomenos ◽  
Dimitrios Panias

The increasing demand for aluminum in conjunction with the limited available bauxite deposits in Europe results in the dire need for the evaluation of alternative raw materials for the whole value chain of alumina production. The present paper focuses on the possible use of nepheline syenite, originated as a mine byproduct, in alumina production through leaching with an azeotropic HCl solution. Previous work on nepheline syenite dissolution focused more on the extraction of potassium and sodium values. In this work, emphasis is given at the characteristics and leachability of aluminum content phases by applying a high temperature HCl leaching in untreated material. From this point of view, leaching experiments were conducted on nepheline syenite, at a temperature range of 90 °C to 150 °C and with aqueous azeotropic HCl solution. Leaching, in the aforementioned conditions, is a process, characterized by medium aluminum dissolution. The results show that the aluminum-bearing phases that withstand the dissolution process are mainly the ones of sodium and potassium feldspars.


2021 ◽  
Vol 59 (7) ◽  
pp. 469-475
Author(s):  
Si Jeong Song ◽  
Viet Nhan Hoa Nguyen ◽  
Man Seung Lee

Spent electroplating solutions contain small amounts of Pd(II). Cementation of Pd(II) with zinc metal powder is practiced to concentrate the Pd. Dissolution of the cemented Pd metal is necessary to recover pure Pd metal or compounds. In this work, the leaching behavior of Pd metal in inorganic acid solutions (hydrochloric and sulfuric acid) in the presence of an oxidizing agent such as H2O2, NaClO3, or NaClO was investigated. To determine the optimum conditions for Pd leaching, experiments were conducted by adjusting the concentration of the acids and oxidizing agents, reaction temperature and time, and pulp density. Complete leaching of Pd was possible using a hydrochloric acid solution with 3 kinds of oxidizing agents, whereas only NaClO was effective in the leaching with sulfuric acid solution. The chloride ions of HCl and NaClO3/NaClO play an important role in enhancing the leaching of Pd, due to the formation of Pd chlorocomplexes and by decreasing the reduction potential of Pd(II). Compared to H2O2, NaClO3 and NaClO showed some merits as oxidizing agents in terms of reaction time, temperature and low acid concentration. Based on the optimum leaching conditions of single Pd metal, the conditions for the complete leaching of Pd and Zn from the metallic mixtures were obtained.


Sign in / Sign up

Export Citation Format

Share Document