On the exceptional set of the generalized Ramanujan conjecture for GL(3)

Author(s):  
Yuk-Kam Lau ◽  
Ming Ho Ng ◽  
Yingnan Wang
Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2017 ◽  
Vol 27 (13) ◽  
pp. 2461-2484 ◽  
Author(s):  
Manuel Friedrich

We present a Korn-type inequality in a planar setting for special functions of bounded deformation. We prove that for each function in [Formula: see text] with a sufficiently small jump set the distance of the function and its derivative from an infinitesimal rigid motion can be controlled in terms of the linearized elastic strain outside of a small exceptional set of finite perimeter. Particularly, the result shows that each function in [Formula: see text] has bounded variation away from an arbitrarily small part of the domain.


2010 ◽  
Vol 88 (2) ◽  
pp. 145-167 ◽  
Author(s):  
I. CHYZHYKOV ◽  
J. HEITTOKANGAS ◽  
J. RÄTTYÄ

AbstractNew estimates are obtained for the maximum modulus of the generalized logarithmic derivatives f(k)/f(j), where f is analytic and of finite order of growth in the unit disc, and k and j are integers satisfying k>j≥0. These estimates are stated in terms of a fixed (Lindelöf) proximate order of f and are valid outside a possible exceptional set of arbitrarily small upper density. The results obtained are then used to study the growth of solutions of linear differential equations in the unit disc. Examples are given to show that all of the results are sharp.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
DIEGO MARQUES ◽  
JOSIMAR RAMIREZ

In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].


2011 ◽  
Vol 07 (04) ◽  
pp. 855-919
Author(s):  
YUVAL Z. FLICKER

The Saito–Kurokawa lifting of automorphic representations from PGL(2) to the projective symplectic group of similitudes PGSp(4) of genus 2 is studied using the Fourier summation formula (an instance of the "relative trace formula"), thus characterizing the image as the representations with a nonzero period for the special orthogonal group SO(4, E/F) associated to a quadratic extension E of the global base field F, and a nonzero Fourier coefficient for a generic character of the unipotent radical of the Siegel parabolic subgroup. The image is nongeneric and almost everywhere nontempered, violating a naive generalization of the Ramanujan conjecture. Technical advances here concern the development of the summation formula and matching of relative orbital integrals.


1989 ◽  
Vol 53 (3-4) ◽  
pp. 347-365 ◽  
Author(s):  
R. Brünner ◽  
A. Perelli ◽  
J. Pintz
Keyword(s):  

2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Qingfeng Sun

AbstractLet F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.


Author(s):  
Shuyi Lin ◽  
Jinjun Li ◽  
Manli Lou

Let [Formula: see text] denote the largest digit of the first [Formula: see text] terms in the Lüroth expansion of [Formula: see text]. Shen, Yu and Zhou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014) 1015–1023 considered the level sets [Formula: see text] and proved that each [Formula: see text] has full Hausdorff dimension. In this paper, we investigate the Hausdorff dimension of the following refined exceptional set: [Formula: see text] and show that [Formula: see text] has full Hausdorff dimension for each pair [Formula: see text] with [Formula: see text]. Combining the two results, [Formula: see text] can be decomposed into the disjoint union of uncountably many sets with full Hausdorff dimension.


Sign in / Sign up

Export Citation Format

Share Document