Exceptional sets related to the largest digits in Lüroth expansions

Author(s):  
Shuyi Lin ◽  
Jinjun Li ◽  
Manli Lou

Let [Formula: see text] denote the largest digit of the first [Formula: see text] terms in the Lüroth expansion of [Formula: see text]. Shen, Yu and Zhou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014) 1015–1023 considered the level sets [Formula: see text] and proved that each [Formula: see text] has full Hausdorff dimension. In this paper, we investigate the Hausdorff dimension of the following refined exceptional set: [Formula: see text] and show that [Formula: see text] has full Hausdorff dimension for each pair [Formula: see text] with [Formula: see text]. Combining the two results, [Formula: see text] can be decomposed into the disjoint union of uncountably many sets with full Hausdorff dimension.

2010 ◽  
Vol 149 (1) ◽  
pp. 147-172 ◽  
Author(s):  
ZOLTÁN M. BALOGH ◽  
RETO BERGER ◽  
ROBERTO MONTI ◽  
JEREMY T. TYSON

AbstractWe consider self-similar iterated function systems in the sub-Riemannian setting of Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric is strictly less than the similarity dimension. This extends a recent result of Falconer and Miao from Euclidean space to Carnot groups.


Fractals ◽  
2017 ◽  
Vol 25 (06) ◽  
pp. 1750060 ◽  
Author(s):  
LIXUAN ZHENG ◽  
MIN WU ◽  
BING LI

Let [Formula: see text] and the run-length function [Formula: see text] be the maximal length of consecutive zeros amongst the first [Formula: see text] digits in the [Formula: see text]-expansion of [Formula: see text]. The exceptional set [Formula: see text] is investigated, where [Formula: see text] is a monotonically increasing function with [Formula: see text]. We prove that the set [Formula: see text] is either empty or of full Hausdorff dimension and residual in [Formula: see text] according to the increasing rate of [Formula: see text].


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850074 ◽  
Author(s):  
MENGJIE ZHANG

For any real number [Formula: see text], and any [Formula: see text], let [Formula: see text] be the maximal length of consecutive zeros in the first [Formula: see text] digits of the [Formula: see text]-expansion of [Formula: see text]. Recently, Tong, Yu and Zhao [On the length of consecutive zero digits of [Formula: see text]-expansions, Int. J. Number Theory 12 (2016) 625–633] proved that for any [Formula: see text], for Lebesgue almost all [Formula: see text], [Formula: see text] In this paper, we quantify the size of the set of [Formula: see text] for which [Formula: see text] grows to infinity in a general speed. More precisely, for any increasing function [Formula: see text] with [Formula: see text] tending to [Formula: see text] and [Formula: see text], we show that for any [Formula: see text], the set [Formula: see text] has full Hausdorff dimension.


2017 ◽  
Vol 13 (10) ◽  
pp. 2777-2790 ◽  
Author(s):  
Kunkun Song ◽  
Lulu Fang ◽  
Jihua Ma

Let [Formula: see text] be the Lüroth expansion of [Formula: see text]. This paper is concerned with the growth rate of the partial maximum [Formula: see text]. We completely determined the Hausdorff dimension of the set [Formula: see text] when [Formula: see text] tends to infinity with polynomial or exponential rates.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
DIEGO MARQUES ◽  
JOSIMAR RAMIREZ

In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].


2018 ◽  
Vol 458 (1) ◽  
pp. 464-480
Author(s):  
Haibo Chen ◽  
Daoxin Ding ◽  
Xinghuo Long

Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.


Author(s):  
Xiaoyan Tan ◽  
Jia Liu ◽  
Zhenliang Zhang

For any [Formula: see text] in [Formula: see text], let [Formula: see text] be the Lüroth expansion of [Formula: see text]. In this paper, we study the relative convergence speed of its convergents [Formula: see text] to the rate of growth of digits in the Lüroth expansion of an irrational number. For any [Formula: see text] in [Formula: see text], the sets [Formula: see text] and [Formula: see text] are proved to be of same Hausdorff dimension [Formula: see text]. Furthermore, for any [Formula: see text] in [Formula: see text] with [Formula: see text], the Hausdorff dimension of the set [Formula: see text] [Formula: see text] is proved to be either [Formula: see text] or [Formula: see text] according as [Formula: see text] or not.


Sign in / Sign up

Export Citation Format

Share Document