scholarly journals Fourth-order dispersive systems on the one-dimensional torus

2015 ◽  
Vol 6 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Hiroyuki Chihara
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
D. Yambangwai ◽  
N. P. Moshkin

A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical solution of the one-dimensional heat equation. The fourth-order methods proposed are the easier development and can be solved by using Thomas algorithms. The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting problems with Dirichlet boundary conditions and initial data.


2020 ◽  
Vol 34 ◽  
pp. 03011
Author(s):  
Constantin Niţă ◽  
Laurenţiu Emanuel Temereancă

In this article we prove that the heat equation with a memory term on the one-dimensional torus has a unique solution and we study the smoothness properties of this solution. These properties are related with some smoothness assumptions imposed to the initial data of the problem and to the source term.


2011 ◽  
Vol 32 (6) ◽  
pp. 1991-2010 ◽  
Author(s):  
YAIR HARTMAN

AbstractIn this article, we consider semigroups of transformations of cellular automata which act on a fixed shift space. In particular, we are interested in two properties of these semigroups which relate to ‘largeness’: first, a semigroup has the ID (infinite is dense) property if the only infinite invariant closed set (with respect to the semigroup action) is the entire space; the second property is maximal commutativity (MC). We shall consider two examples of semigroups: one is spanned by cellular automata transformations that represent multiplications by integers on the one-dimensional torus, and the other one consists of all the cellular automata transformations which are linear (when the symbols set is the ring ℤ/sℤ). It will be shown that these two properties of these semigroups depend on the number of symbols s. The multiplication semigroup is ID and MC if and only if s is not a power of a prime. The linear semigroup over the mentioned ring is always MC but is ID if and only if s is prime. When the symbol set is endowed with a finite field structure (when possible), the linear semigroup is both ID and MC. In addition, we associate with each semigroup which acts on a one-sided shift space a semigroup acting on a two-sided shift space, and vice versa, in a way that preserves the ID and the MC properties.


Sign in / Sign up

Export Citation Format

Share Document