PARP Inhibitors in Gynecologic Cancers: What Is the Next Big Development?

2020 ◽  
Vol 22 (3) ◽  
Author(s):  
Michelle Lightfoot ◽  
Lauren Montemorano ◽  
Kristin Bixel
Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1593
Author(s):  
Yun-Hsin Tang ◽  
Chiao-Yun Lin ◽  
Chyong-Huey Lai

With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.


2003 ◽  
Author(s):  
Eliane Duarte-Franco ◽  
Eduardo L. Franco
Keyword(s):  

2018 ◽  
Vol 16 (2) ◽  
pp. 126-136
Author(s):  
Aleksandra Stupak ◽  
◽  
Anna Kwaśniewska ◽  

2017 ◽  
Vol 18 (10) ◽  
Author(s):  
Jinping Li ◽  
Haibin Chen ◽  
John R. Curcuru ◽  
Sheena Patel ◽  
Taylor O. Johns ◽  
...  
Keyword(s):  

Author(s):  
Ashish Shah ◽  
Ghanshyam Parmar ◽  
Avinash Kumar Seth

Background: The concept of synthetic lethality is emerging field in the treatment of cancer and can be applied for new drug development of cancer as it has been already represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. Objectives: In this study we performed virtual screening of 329 flavonoids obtained from Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target (NPACT) database to identify novel PARP inhibitors. Materials and methods: Virtual screening carried out using different In Silico methods which includes molecular docking studies, prediction of druglikeness and In Silico toxicity studies. Results: Fifteen out of 329 flavonoids achieved better docking score as compared to rucaparib which is an FDA approved PARP inhibitor. These 15 hits were again rescored using accurate docking mode and drug-likeliness properties were evaluated. Accuracy of docking method was checked using re-docking. Finally NPACT00183 and NPACT00280 were identified as potential PARP inhibitors with docking score of -139.237 and -129.36 respectively. These two flavonoids were also showed no AMES toxicity and no carcinogenicity which was predicted using admetSAR. Conclusion: Our finding suggests that NPACT00183 and NPACT00280 have promising potential to be further explored as PARP inhibitors.


2020 ◽  
Vol 16 (8) ◽  
pp. 1088-1105
Author(s):  
Nafiseh Vahedi ◽  
Majid Mohammadhosseini ◽  
Mehdi Nekoei

Background: The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily present in eukaryotes. Methods: In the present report, some efficient linear and non-linear methods including multiple linear regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully used to develop and establish quantitative structure-activity relationship (QSAR) models capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set and selection of the training and test sets. A genetic algorithm (GA) variable selection method was employed to select the optimal subset of descriptors that have the most significant contributions to the overall inhibitory activity from the large pool of calculated descriptors. Results: The accuracy and predictability of the proposed models were further confirmed using crossvalidation, validation through an external test set and Y-randomization (chance correlations) approaches. Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed models. The results revealed that non-linear modeling approaches, including SVM and ANN could provide much more prediction capabilities. Conclusion: Among the constructed models and in terms of root mean square error of predictions (RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for the training set, the predictive power of the GA-SVM approach was better. However, compared with MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.


Sign in / Sign up

Export Citation Format

Share Document