Fractionation of Sugarcane Bagasse Using a Combined Process of Dilute Acid and Ionic Liquid Treatments

2012 ◽  
Vol 167 (7) ◽  
pp. 1921-1937 ◽  
Author(s):  
Danie Diedericks ◽  
Eugéne van Rensburg ◽  
Johann F. Görgens
2013 ◽  
Vol 48 (12) ◽  
pp. 1942-1946 ◽  
Author(s):  
Li-Qun Jiang ◽  
Zhen Fang ◽  
Xing-Kang Li ◽  
Jia Luo ◽  
Suet-Pin Fan

2018 ◽  
Vol 249 ◽  
pp. 1058-1061 ◽  
Author(s):  
Jiaxing Xu ◽  
Jiming Xu ◽  
Sen Zhang ◽  
Jun Xia ◽  
Xiaoyan Liu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Robinson Timung ◽  
Narendra Naik Deshavath ◽  
Vaibhav V. Goud ◽  
Venkata V. Dasu

This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1and 487.50 mg·g−1for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass usingTrichoderma reesei26291 showed maximum TRS yield of 226.99 mg·g−1for citronella and 282.85 mg·g−1for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI) of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Hodgson-Kratky ◽  
G. Papa ◽  
A. Rodriguez ◽  
V. Stavila ◽  
B. Simmons ◽  
...  

Abstract Background Lignocellulosic biomass is recognized as a promising renewable feedstock for the production of biofuels. However, current methods for converting biomass into fermentable sugars are considered too expensive and inefficient due to the recalcitrance of the secondary cell wall. Biomass composition can be modified to create varieties that are efficiently broken down to release cell wall sugars. This study focused on identifying the key biomass components influencing plant cell wall recalcitrance that can be targeted for selection in sugarcane, an important and abundant source of biomass. Results Biomass composition and the amount of glucan converted into glucose after saccharification were measured in leaf and culm tissues from seven sugarcane genotypes varying in fiber composition after no pretreatment and dilute acid, hydrothermal and ionic liquid pretreatments. In extractives-free sugarcane leaf and culm tissue, glucan, xylan, acid-insoluble lignin (AIL) and acid-soluble lignin (ASL) ranged from 20 to 32%, 15% to 21%, 14% to 20% and 2% to 4%, respectively. The ratio of syringyl (S) to guaiacyl (G) content in the lignin ranged from 1.5 to 2.2 in the culm and from 0.65 to 1.1 in the leaf. Hydrothermal and dilute acid pretreatments predominantly reduced xylan content, while the ionic liquid (IL) pretreatment targeted AIL reduction. The amount of glucan converted into glucose after 26 h of pre-saccharification was highest after IL pretreatment (42% in culm and 63.5% in leaf) compared to the other pretreatments. Additionally, glucan conversion in leaf tissues was approximately 1.5-fold of that in culm tissues. Percent glucan conversion varied between genotypes but there was no genotype that was superior to all others across the pretreatment groups. Path analysis revealed that S/G ratio, AIL and xylan had the strongest negative associations with percent glucan conversion, while ASL and glucan content had strong positive influences. Conclusion To improve saccharification efficiency of lignocellulosic biomass, breeders should focus on reducing S/G ratio, xylan and AIL content and increasing ASL and glucan content. This will be key for the development of sugarcane varieties for bioenergy uses.


2010 ◽  
Vol 101 (13) ◽  
pp. 4900-4906 ◽  
Author(s):  
Chenlin Li ◽  
Bernhard Knierim ◽  
Chithra Manisseri ◽  
Rohit Arora ◽  
Henrik V. Scheller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document