scholarly journals Collateral Sprouting of Peripheral Sensory Neurons Exhibits a Unique Transcriptomic Profile

2020 ◽  
Vol 57 (10) ◽  
pp. 4232-4249
Author(s):  
Dominique Lemaitre ◽  
Maica Llavero Hurtado ◽  
Cristian De Gregorio ◽  
Maritza Oñate ◽  
Gabriela Martínez ◽  
...  
Neuroscience ◽  
2010 ◽  
Vol 169 (1) ◽  
pp. 449-454 ◽  
Author(s):  
C. König ◽  
O. Gavrilova-Ruch ◽  
G. Segond von Banchet ◽  
R. Bauer ◽  
M. Grün ◽  
...  

Pain ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 2364-2372 ◽  
Author(s):  
Kalina Szteyn ◽  
Matthew P. Rowan ◽  
Ruben Gomez ◽  
Junhui Du ◽  
Susan M. Carlton ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8826
Author(s):  
Wanzhi Wang ◽  
Miaomiao Kong ◽  
Yu Dou ◽  
Shanghai Xue ◽  
Yang Liu ◽  
...  

Chronic pain is a leading health and socioeconomic problem and an unmet need exists for long-lasting analgesics. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are required for neuropeptide release and noxious signal transducer surface trafficking, thus, selective expression of the SNARE-cleaving light-chain protease of botulinum neurotoxin A (LCA) in peripheral sensory neurons could alleviate chronic pain. However, a safety concern to this approach is the lack of a sensory neuronal promoter to prevent the expression of LCA in the central nervous system. Towards this, we exploit the unique characteristics of Pirt (phosphoinositide-interacting regulator of TRP), which is expressed in peripheral nociceptive neurons. For the first time, we identified a Pirt promoter element and cloned it into a lentiviral vector driving transgene expression selectively in peripheral sensory neurons. Pirt promoter driven-LCA expression yielded rapid and concentration-dependent cleavage of SNAP-25 in cultured sensory neurons. Moreover, the transcripts of pain-related genes (TAC1, tachykinin precursor 1; CALCB, calcitonin gene-related peptide 2; HTR3A, 5-hydroxytryptamine receptor 3A; NPY2R, neuropeptide Y receptor Y2; GPR52, G protein-coupled receptor 52; SCN9A, sodium voltage-gated channel alpha subunit 9; TRPV1 and TRPA1, transient receptor potential cation channel subfamily V member 1 and subfamily A member 1) in pro-inflammatory cytokines stimulated sensory neurons were downregulated by viral mediated expression of LCA. Furthermore, viral expression of LCA yielded long-lasting inhibition of pain mediator release. Thus, we show that the engineered Pirt-LCA virus may provide a novel means for long lasting pain relief.


2020 ◽  
Vol 132 (4) ◽  
pp. 867-880 ◽  
Author(s):  
Doaa M. Mohamed ◽  
Mohammed Shaqura ◽  
Xiongjuan Li ◽  
Mehdi Shakibaei ◽  
Antje Beyer ◽  
...  

Abstract Background Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons. Methods In male Wistar rats (n = 5 to 8 per group) with Freund’s complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase–polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application. Results In rats with Freund’s complete adjuvant–induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2). Conclusions Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2014 ◽  
Vol 18 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Joel W Blanchard ◽  
Kevin T Eade ◽  
Attila Szűcs ◽  
Valentina Lo Sardo ◽  
Rachel K Tsunemoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document