scholarly journals Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses

2010 ◽  
Vol 35 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Linda S. M. Ooi ◽  
Wing-Shan Ho ◽  
Karry L. K. Ngai ◽  
Li Tian ◽  
Paul K. S. Chan ◽  
...  
2015 ◽  
Vol 54 (1) ◽  
pp. 212-215 ◽  
Author(s):  
Sam T. Douthwaite ◽  
Charlotte Walker ◽  
Elisabeth J. Adams ◽  
Catherine Mak ◽  
Andres Vecino Ortiz ◽  
...  

The performance of the Enigma MiniLab assay for influenza A and B viruses and respiratory syncytial virus (RSV) was compared to a centralized laboratory respiratory virus panel. The positive and negative percent agreement for influenza A virus, influenza B virus, and RSV were 79.2% (95% confidence interval [95% CI], 57.8 to 92.9%) and 99.4% (95% CI, 98.4 to 99.9), 100% (95% CI, 47.8 to 100%) and 100% (95% CI, 99.3 to 100%), 98.5% (95% CI, 94.6 to 99.8%) and 94.5% (95% CI, 91.9 to 96.4%), respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olalekan Olanrewaju Bakare ◽  
Marshall Keyster ◽  
Ashley Pretorius

AbstractPneumonia is the main reason for mortality among children under five years, causing 1.6 million deaths every year; late research has exhibited that mortality is increasing in the elderly. A few biomarkers used for its diagnosis need specificity and precision, as they are related to different infections, for example, pulmonary tuberculosis and Human Immunodeficiency Virus. There is a quest for new biomarkers worldwide to diagnose the disease to defeat these previously mentioned constraints. Antimicrobial peptides (AMPs) are promising indicative specialists against infection. This research work used AMPs as biomarkers to detect viral pneumonia pathogens, for example, Respiratory syncytial virus, Influenza A and B viruses utilizing in silico technologies, such as Hidden Markov Model (HMMER). HMMER was used to distinguish putative anti-viral pneumonia AMPs against the recognized receptor proteins of Respiratory syncytial virus, Influenza A, and B viruses. The physicochemical parameters of these putative AMPs were analyzed, and their 3-D structures were determined utilizing I-TASSER. Molecular docking interaction of these AMPs against the recognized viral pneumonia proteins was carried out using the PATCHDOCK and HDock servers. The results demonstrated 27 anti-viral AMPs ranked based on their E values with significant physicochemical parameters in similarity with known experimentally approved AMPs. The AMPs additionally had a high anticipated binding potential to the pneumonia receptors of these microorganisms sensitively. The tendency of the putative anti-viral AMPs to bind pneumonia proteins showed that they would be promising applicant biomarkers to identify these viral microorganisms in the point-of-care (POC) pneumonia diagnostics. The high precision observed for the AMPs legitimizes HMM’s utilization in the disease diagnostics’ discovery process.


2012 ◽  
Vol 206 (5) ◽  
pp. 628-639 ◽  
Author(s):  
Liselotte van Asten ◽  
Cees van den Wijngaard ◽  
Wilfrid van Pelt ◽  
Jan van de Kassteele ◽  
Adam Meijer ◽  
...  

2010 ◽  
Vol 61 (5) ◽  
pp. 382-390 ◽  
Author(s):  
Fernando Lovato-Salas ◽  
Lorena Matienzo-Serment ◽  
César Monjarás-Ávila ◽  
Elizabeth E. Godoy-Lozano ◽  
Andreu Comas-García ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9814
Author(s):  
Xulong Cai ◽  
Qiaolan Xu ◽  
Chenrong Zhou ◽  
Li Zhou ◽  
Qijun Yong ◽  
...  

Background Lower respiratory tract infection (LRTI) is one of the leading cause of death in children under 5 years old around the world between 1980 and 2016. Distinguishing between viral and bacterial infection is challenging when children suffered from LRTI in the absence of pathogen detection. The aim of our study is to analyze the difference of serum β2-microglobulin (β2-MG) between viral LRTI and bacterial LRTI in children. Methods This retrospective study included children with LRTI caused by a single pathogen from Yancheng Third People’s Hospital, Yancheng, China, between January 1, 2016 and December 31, 2019. Participants were divided into the younger group (1 year old ≤ age < 3 years old) and the older group (3 years old ≤ age < 5 years old) for subgroup analysis. Results A total of 475 children with LRTI caused by common respiratory pathogens were identified. In the younger group as well as the older group, the serum level of β2-MG in respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly increased compared to that in the Mycoplasma pneumoniae group. Compared with Streptococcus pneumoniae infection group, the serum β2-MG level of respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly higher in children between 1 and 3 years old. Conclusions The serum β2-MG may distinguish viral infection from bacterial infection in children with LRTI.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Sign in / Sign up

Export Citation Format

Share Document