scholarly journals Performance of a Novel Point-of-Care Molecular Assay for Detection of Influenza A and B Viruses and Respiratory Syncytial Virus (Enigma MiniLab) in Children with Acute Respiratory Infection

2015 ◽  
Vol 54 (1) ◽  
pp. 212-215 ◽  
Author(s):  
Sam T. Douthwaite ◽  
Charlotte Walker ◽  
Elisabeth J. Adams ◽  
Catherine Mak ◽  
Andres Vecino Ortiz ◽  
...  

The performance of the Enigma MiniLab assay for influenza A and B viruses and respiratory syncytial virus (RSV) was compared to a centralized laboratory respiratory virus panel. The positive and negative percent agreement for influenza A virus, influenza B virus, and RSV were 79.2% (95% confidence interval [95% CI], 57.8 to 92.9%) and 99.4% (95% CI, 98.4 to 99.9), 100% (95% CI, 47.8 to 100%) and 100% (95% CI, 99.3 to 100%), 98.5% (95% CI, 94.6 to 99.8%) and 94.5% (95% CI, 91.9 to 96.4%), respectively.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9814
Author(s):  
Xulong Cai ◽  
Qiaolan Xu ◽  
Chenrong Zhou ◽  
Li Zhou ◽  
Qijun Yong ◽  
...  

Background Lower respiratory tract infection (LRTI) is one of the leading cause of death in children under 5 years old around the world between 1980 and 2016. Distinguishing between viral and bacterial infection is challenging when children suffered from LRTI in the absence of pathogen detection. The aim of our study is to analyze the difference of serum β2-microglobulin (β2-MG) between viral LRTI and bacterial LRTI in children. Methods This retrospective study included children with LRTI caused by a single pathogen from Yancheng Third People’s Hospital, Yancheng, China, between January 1, 2016 and December 31, 2019. Participants were divided into the younger group (1 year old ≤ age < 3 years old) and the older group (3 years old ≤ age < 5 years old) for subgroup analysis. Results A total of 475 children with LRTI caused by common respiratory pathogens were identified. In the younger group as well as the older group, the serum level of β2-MG in respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly increased compared to that in the Mycoplasma pneumoniae group. Compared with Streptococcus pneumoniae infection group, the serum β2-MG level of respiratory syncytial virus, influenza A virus and influenza B virus groups were significantly higher in children between 1 and 3 years old. Conclusions The serum β2-MG may distinguish viral infection from bacterial infection in children with LRTI.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
Dithi Banerjee ◽  
Neena Kanwar ◽  
Ferdaus Hassan ◽  
Cynthia Essmyer ◽  
Rangaraj Selvarangan

ABSTRACT The rapid and accurate detection of influenza A virus (FluA), influenza B virus (FluB), and respiratory syncytial virus (RSV) improves patient care. Sample-to-answer (STA) platforms based on nucleic acid amplification and detection of these viruses are simple, automated, and accurate. We compared six such platforms for the detection of FluA, FluB, and RSV: Cepheid GeneXpert Xpress Flu/RSV (Xpert), Hologic Panther Fusion Flu A/B/RSV (Fusion), Cobas influenza A/B & RSV (Liat), Luminex Aries Flu A/B & RSV (Aries), BioFire FilmArray respiratory panel (RP), and Diasorin Simplexa Flu A/B & RSV (Simplexa). Nasopharyngeal (NP) swab specimens (n = 225) from children previously tested by RP were assessed on these platforms. The results were compared to those of the Centers for Disease Control and Prevention (CDC)-developed real-time reverse transcription-PCR (rRT-PCR) assay for influenza A/B viruses and RSV. Subtyping for FluA and FluB was performed for discrepant analysis where applicable. The percent sensitivities/specificities for FluA detection were 100/100 (Fusion), 98.6/99.3 (Xpert), 100/100 (Liat), 98.6/100 (Aries), 98.6/100 (Simplexa), and 100/100 (RP). The percent sensitivities/specificities for FluB detection were 100/100 (Fusion), 97.9/99.4 (Xpert), 97.9/98.3 (Liat), 93.7/99.4 (Aries), 85.4/99.4 (Simplexa), and 95.8/97.7 (RP); and those for RSV detection were 98.1/99.4 (Xpert), 98.1/99.4 (Liat), 96.3/100 (Fusion), 94.4/100 (Aries), 87/94.4 (Simplexa), and 94.4/100 (RP). The 75 strains confirmed to be FluA included 29 pH1N1, 39 H3N2, 4 sH1N1, and 3 untyped strains. The 48 strains confirmed to be FluB included 33 strains of the Yamagata lineage, 13 of the Victoria lineage, 1 of both the Yamagata and Victoria lineages, and 1 of an unknown lineage. All six STA platforms demonstrated >95% sensitivity for FluA detection, while three platforms (Fusion, Xpert, and Liat) demonstrated >95% sensitivity for FluB and RSV detection.


1976 ◽  
Vol 77 (3) ◽  
pp. 383-392 ◽  
Author(s):  
E. O. Caul ◽  
D. K. Waller ◽  
S. K. R. Clarke ◽  
B. D. Corner

SUMMARYAmong 741 children under 5 years admitted to hospital with respiratory infections during two winters, infection with influenza A virus was diagnosed in 70 (9%), with influenza B virus in 8 (1%), and with respiratory syncytial virus (RSV) in 259 (35 %). Both influenza virus and RSV infections were diagnosed most frequently in children under the age of one year, and diagnosed more frequently in males than females. Influenza illnesses were more severe in boys than girls. Both infections occurred more often, but were not more severe, in children from a conurbation than in those from ‘rural’ areas. Convulsions were the cause of 36% of admissions with influenza A infections, but were rare in RSV infections. Bronchiolitis was the reason for 39% of admissions with RSV infections, but was rare in influenza infections. It is suggested that infants admitted to hospital are a good source of influenza virus strains for monitoring arttigenic variation.


2012 ◽  
Vol 206 (5) ◽  
pp. 628-639 ◽  
Author(s):  
Liselotte van Asten ◽  
Cees van den Wijngaard ◽  
Wilfrid van Pelt ◽  
Jan van de Kassteele ◽  
Adam Meijer ◽  
...  

2021 ◽  
Author(s):  
Koukeo Phommasone ◽  
Xaipasong Xaiyaphet ◽  
Jose A. Garcia-Rivera ◽  
Robert D. Hontz ◽  
Viengmone Pathavongsa ◽  
...  

Abstract Background With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Methods Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 *[OR-1]/OR)(OR = Odds Ratio). Results Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 172 (87%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Conclusion Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


2009 ◽  
Vol 58 (12) ◽  
pp. 1616-1622 ◽  
Author(s):  
Anurodh S. Agrawal ◽  
Mehuli Sarkar ◽  
Sekhar Chakrabarti ◽  
K. Rajendran ◽  
Harpreet Kaur ◽  
...  

Acute respiratory tract infections (ARTIs) are one of the most common causes of morbidity and mortality in young children worldwide. Influenza virus and respiratory syncytial virus (RSV) are the predominant aetiological agents during seasonal epidemics, and thus rapid and sensitive molecular tests for screening for such agents and timely identification of epidemics are required. This study compared real-time quantitative PCR (qPCR) with conventional RT-PCR for parallel identification of influenza A virus (IAV) or influenza B virus (IBV) and RSV. A total of 1091 respiratory samples was examined from children with suspected ARTIs between January 2007 and December 2008. Of these, 275 (25.21 %) were positive for either influenza or RSV by qPCR compared with 262 (24 .01%) positive by RT-PCR. Overall, IAV, IBV and RSV were detected in 121 (11.09 %), 59 (5.41 %) and 95 (8.71 %) samples, respectively. In spite of overlapping clinical symptoms, RSV and influenza virus showed distinct seasonal peaks. IAV correlated positively and RSV negatively with rainfall and temperature. No distinct seasonality was observed in IBV infections. This is, to the best of our knowledge, the first report of a systemic surveillance of respiratory viruses with seasonal correlation and prevalence rates from eastern India. This 2 year comparative analysis also confirmed the feasibility of using qPCR in developing countries, which will not only improve the scope for prevention of epidemics, but will also provide crucial epidemiological data from tropical regions.


Sign in / Sign up

Export Citation Format

Share Document