Observed variability of the West India Coastal Current on the continental slope from 2009–2018

2020 ◽  
Vol 129 (1) ◽  
Author(s):  
Anya Chaudhuri ◽  
D Shankar ◽  
S G Aparna ◽  
P Amol ◽  
V Fernando ◽  
...  
2014 ◽  
Vol 123 (5) ◽  
pp. 1045-1074 ◽  
Author(s):  
P Amol ◽  
D Shankar ◽  
V Fernando ◽  
A Mukherjee ◽  
S G Aparna ◽  
...  

2021 ◽  
Vol 130 (2) ◽  
Author(s):  
Anya Chaudhuri ◽  
P Amol ◽  
D Shankar ◽  
S Mukhopadhyay ◽  
S G Aparna ◽  
...  

2002 ◽  
Vol 452 ◽  
pp. 97-121 ◽  
Author(s):  
C. CENEDESE ◽  
P. F. LINDEN

Buoyancy-driven surface currents were generated in the laboratory by releasing buoyant fluid from a source adjacent to a vertical boundary in a rotating container. Different bottom topographies that simulate both a continental slope and a continental ridge were introduced in the container. The topography modified the flow in comparison with the at bottom case where the current grew in width and depth until it became unstable once to non-axisymmetric disturbances. However, when topography was introduced a second instability of the buoyancy-driven current was observed. The most important parameter describing the flow is the ratio of continental shelf width W to the width L* of the current at the onset of the instability. The values of L* for the first instability, and L*−W for the second instability were not influenced by the topography and were 2–6 times the Rossby radius. Thus, the parameter describing the flow can be expressed as the ratio of the width of the continental shelf to the Rossby radius. When this ratio is larger than 2–6 the second instability was observed on the current front. A continental ridge allowed the disturbance to grow to larger amplitude with formation of eddies and fronts, while a gentle continental slope reduced the growth rate and amplitude of the most unstable mode, when compared to the continental ridge topography. When present, eddies did not separate from the main current, and remained near the shelf break. On the other hand, for the largest values of the Rossby radius the first instability was suppressed and the flow was observed to remain stable. A small but significant variation was found in the wavelength of the first instability, which was smaller for a current over topography than over a flat bottom.


2021 ◽  
Author(s):  
Xiaoyi Pan ◽  
Linlin Li ◽  
Hong Phuong Nguyen ◽  
Dawei Wang

<p>The 109 meridian fault is located in the west of the South China Sea (SCS) connecting to the offshore Red River Shear Zone. The evolution processes of the 109 meridian fault: striking-uplifting-subsidence of adjacent basin led to a nearly 1000m sharp bathymetric difference in the offshore region of central Vietnam. Combined with the high sediment input from numerous montane rivers in the rising hinterland, the continental slope near central Vietnam possesses the ideal condition for developing submarine landslides. Seismic data indicates many submarine landslides were developed along the steep continental slope. In this study, we analyze the possible trigger mechanisms of these landslides based on the local geological background and sedimentary environment, and assess their tsunamigenic potential along the coast of the Southern Central Vietnam (SCV). We point out that the landslide failures in this region could be triggered by several mechanisms, including seismic activities in the offshore SCV, volcanic activities, gas seep on the slope and the relative sea-level changes. The seismic and volcanic activities are related directly to the late middle Miocene volcanism generated by the change from left- to right-lateral motion on the Red River Shear Zone, showing that tectonism play a significant role in the generation of submarine landslide in the western continental slope of the SCS. To estimate the impact of tsunami waves on SCV coastline, we use two numerical models—NHWAVE and FUNWAVE-TVD to model 4 representative landslides with volume ranging between 1-4km<sup>3</sup> and water depth of 300-1000m. The submarine landslides were treated as rigid slump and deformable slide corresponding to two different sedimentary environments. Our results show that the tsunami waves generated by rigid slump can reach up to 20m height in the landslide source area and arrive earlier to the coast of SCV than waves generated by deformable slide. Among these simulated scenarios, tsunami waves generated by the worst-case scenario arrive at the populated cities including Quy Nhơn (109.3°E,13.77°N), Tuy Hòa (109.37°E ,13.08°N) and Vung Ro Bay (109.43°E,12.86°N) in less than 25mins with maximum height of 5m. It is worth mentioning that the Vung Ro Bay will be affected by tsunami waves in all simulated scenarios. We quantify the influence of landslide characteristics (volume, water depth and material) and highlight the local effect of coastal bathymetry on the tsunami generation and propagation which lead to different hazard level of SCV coast.</p>


2022 ◽  
Vol 131 (1) ◽  
Author(s):  
V Vijith ◽  
S R Shetye ◽  
A D Gouveia ◽  
S S C Shenoi ◽  
G S Michael ◽  
...  

2002 ◽  
Vol 76 (2) ◽  
pp. 287-305 ◽  
Author(s):  
Ed Landing ◽  
Gerd Geyer ◽  
Kenneth E. Bartowski

Latest Early Cambrian continental slope deposition of the early Hatch Hill dysaerobic interval (new name, latest Early Cambrian—earliest Ordovician) is recorded by dark grey shales and turbidite limestones in the Bacchus slice at Ville Guay, Québec. Platform-derived microfaunas of the Bicella bicensis trilobite assemblage were transported into a dysoxic environment of the upper “Anse Maranda Formation,” and many organisms were buried alive. Phosphatization preserved a diverse skeletal fossil assemblage that includes four agnostid trilobites, echinoderm debris, and twenty small shelly fossil taxa. The latter include five helcionellids; Pelagiella Matthew, 1895b, classified herein as a gastropod; a bivalve (Fordilla Barrande, 1881); the brachiopod Linnarssonia taconica Walcott, 1887; two conodontomorphs; four hyoliths; and such phosphatic and calcareous problematica as Coleoloides Walcott, 1889, emend. Most small shelly fossil taxa, including Discinella micans Billings, 1872, range through much of the Olenellus Zone and Elliptocephala asaphoides assemblage interval. Trilobites allow a more resolved correlation into the uppermost Olenellus Zone. A comparable stratigraphy occurs in Cambrian—Ordovician slope facies of the Bacchus slice and the Giddings Brook slice in eastern New York. The “Anse Maranda Formation” correlates with the West Granville—Browns Pond—lower Hatch Hill formations in eastern New York and brackets two dysaerobic intervals (Browns Pond and early Hatch Hill). Sea-level change associated with the Hawke Bay regression between the Browns Pond and Hatch Hill onlap/dysaerobic intervals led to the longest period of oxygenated green shale and sandstone deposition on the east Laurentian slope in the late Early Cambrian-earliest Ordovician.


2015 ◽  
Vol 47 (3-4) ◽  
pp. 1049-1072 ◽  
Author(s):  
D. Shankar ◽  
R. Remya ◽  
P. N. Vinayachandran ◽  
Abhisek Chatterjee ◽  
Ambica Behera

2020 ◽  
Author(s):  
Lina Madaj ◽  
Claude Hillaire-Marcel ◽  
Friedrich Lucassen ◽  
Simone Kasemann

<p>Marine sediments from the West Greenland margin represent high-resolution archives of Holocene climate history, past ice sheet dynamics, changes in meltwater discharge and coastal current intensities. We investigate potential changes of sediment provenances using strontium (Sr) and neodymium (Nd) radiogenic isotopes as tracers for the origin and pathways of the silicate detrital fraction in marine sediments. Meltwater discharge and coastal currents are the most important transport pathways for detrital sediments into (northeast) Labrador Sea, which is an important pathway for freshwater from the Arctic Ocean and meltwater from the Greenland Ice Sheet to enter the North Atlantic, where deep water formation takes place. Variations in freshwater supply into Labrador Sea may influence deep water formation and therefore further circulation and climate patterns on a global scale.</p><p>The marine sediment record collected in Nuuk Trough, southwest Greenland, displays uniform isotopic compositions throughout most of the Holocene, indicating well mixed detrital material from local sources through meltwater discharge and distal sources transported via the West Greenland Current. From around 4 ka BP to present the composition of Nd isotopes reveals a steep (εNd: -29 to -35) and the Sr isotope composition a slight (<sup>87</sup>Sr/<sup>86</sup>Sr: 0.723 to 0.728) but pronounced shift. This time interval coincides with the transition into the Neoglacial time period [1], which is characterized by a significant drop in atmospheric temperatures [2], and the onset of the modern Labrador Sea circulation pattern (e.g. [3]). We suggest that the shift in Nd and Sr isotopes indicates a change towards less distal and more local sediment sources, possibly caused by enhanced erosion of the local bedrock during Neoglacial ice advance [4], along with a decrease in meltwater discharge [5] and coastal current strength, leading to a sediment delivery shift.</p><p>[1] Funder & Fredskild (1989) Quaternary geology of Canada and Greenland, 775–783. [2] Seidenkrantz et al. (2007) The Holocene 17, 387-401. [3] Fagel et al. (2004) Paleoceanography 19, PA3002. [4] Funder et al. (2011) Developments in Quaternary Sciences 15, 699-713, (and references therein). [5] Møller et al. (2006) The Holocene 16, 685-695.</p>


Sign in / Sign up

Export Citation Format

Share Document