deep water formation
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 44)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 17 (6) ◽  
pp. 2327-2341
Author(s):  
Ryan Love ◽  
Heather J. Andres ◽  
Alan Condron ◽  
Lev Tarasov

Abstract. Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial- to millennial-scale climate variability, such as the Younger Dryas and Dansgaard–Oeschger events, but this relationship is not straightforward. Large-scale glacial runoff events, such as Meltwater Pulse 1a (MWP1a), are not always temporally proximal to subsequent large-scale cooling. Moreover, the typical design of hosing experiments that support this relationship tends to artificially amplify the climate response. This study explores the impact that limitations in the representation of runoff in conventional “hosing” simulations has on our understanding of this relationship by examining where coastally released freshwater is transported when it reaches the ocean. We particularly focus on the impact of (1) the injection of freshwater directly over sites of deep-water formation (DWF) rather than at runoff locations (i.e. hosing), (2) excessive freshwater injection volumes (often by a factor of 5), and (3) the use of present-day (rather than palaeo) ocean gateways. We track the routing of glaciologically constrained freshwater volumes from four different inferred injection locations in a suite of eddy-permitting glacial ocean simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm) under both open and closed Bering Strait conditions. Restricting freshwater forcing values to realistic ranges results in less spreading of freshwater across the North Atlantic and indicates that the freshwater anomalies over DWF sites depend strongly on the geographical location of meltwater input. In particular, freshwater released into the Gulf of Mexico generates a very weak freshwater signal over DWF regions as a result of entrainment by the turbulent Gulf Stream. In contrast, freshwater released into the Arctic with an open Bering Strait or from the Eurasian ice sheet is found to generate the largest salinity anomalies over DWF regions in the North Atlantic and GIN (Greenland–Iceland–Norwegian) seas region respectively. Experiments show that when the Bering Strait is open, the Mackenzie River source exhibits more than twice as much freshening of the North Atlantic deep-water formation regions as when the Bering Strait is closed. Our results illustrate that applying freshwater hosing directly into the North Atlantic with even “realistic” freshwater amounts still overestimates the amount of terrestrial runoff reaching DWF regions. Given the simulated salinity anomaly distributions and the lack of reconstructed impact on deep-water formation during the Bølling–Allerød, our results support that the majority of the North American contribution to MWP1a was not routed through the Mackenzie River.


2021 ◽  
Vol 272 ◽  
pp. 107231
Author(s):  
John M. Doherty ◽  
Yuet F. Ling ◽  
Christelle Not ◽  
Dirk Erler ◽  
Henning A. Bauch ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 39-45
Author(s):  
Robert Glenn Johnson

The extremely heavy precipitation that initiated the Last Ice Age (the Wisconsin Glaciation in Canada) was caused by a strong and persistent atmospheric low-pressure system centered over the northern Labrador Sea and southern Baffin Bay. This system, called the Labrador Low, was dependent on strong deep-water formation in the northern end of Baffin Bay. The replacement for the sinking deep water consisted of warmer and more saline Irminger Current water that mixed into the northward-flowing West Greenland Current near the center of the Labrador Low. The heavy precipitation in northeastern Canada began after the stratification in Baffin Bay was eliminated by the southward flow of denser Atlantic water through the Nares Strait. This temporary flow began when the oscillating Atlantic Meridional Oceanic Circulation (AMOC) flow reached a maximum greater than today. This sent Atlantic water westward, north of Greenland and through the Nares Strait. Although the extremely heavy snowfall began the Wisconsin Glaciation in Canada, the initiation of the Last Ice Age in Eurasia was a more complex process and was delayed by about 4,000 years by formation of the Hudson Strait ice dam.


2021 ◽  
pp. 1
Author(s):  
Anaïs Bretones ◽  
Kerim H. Nisancioglu ◽  
Mari F. Jensen ◽  
Ailin Brakstad ◽  
Shuting Yang

AbstractWhile a rapid sea-ice retreat in the Arctic has become ubiquitous, the potential weakening of the Atlantic Meridional Overturning Circulation (AMOC) in response to global warming is still under debate. As deep mixing occurs in the open-ocean close to the sea-ice edge, the strength and vertical extent of the AMOC is likely to respond to ongoing and future sea-ice retreat. Here, we investigate the link between changes in Arctic sea-ice cover and AMOC strength in a long simulation with the EC-Earth-PISM climate model under the emission scenario RCP8.5. The extended duration of the experiment (years 1850-2300) captures the disappearance of summer sea ice in 2060 and the removal of winter sea ice in 2165. By introducing a new metric, the Arctic Meridional Overturning Circulation (ArMOC), we document changes beyond the Greenland-Scotland Ridge and into the central Arctic. We find an ArMOC strengthening as the areas of deep mixing move north, following the retreating winter sea-ice edge into the Nansen Basin. At the same time, mixing in the Labrador and Greenland Seas reduces and the AMOC weakens. As the winter sea-ice edge retreats further into the regions with high surface freshwater content in the central Arctic Basin, the mixing becomes shallower and the ArMOC weakens. Our results suggest that the location of deep-water formation plays a decisive role in the structure and strength of the ArMOC; however, the intermittent strengthening of the ArMOC and convection north of the Greenland-Scotland Ridge cannot compensate for the progressive weakening of the AMOC.


2021 ◽  
Author(s):  
Iván Manuel Parras Berrocal ◽  
Ruben Vazquez ◽  
William David CabosNarvaez ◽  
Dimitry Sein ◽  
Oscar Alvarez Esteban ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan Condron ◽  
Jenna C. Hill

AbstractHigh resolution seafloor mapping shows extraordinary evidence that massive (>300 m thick) icebergs once drifted >5,000 km south along the eastern United States, with >700 iceberg scours now identified south of Cape Hatteras. Here we report on sediment cores collected from several buried scours that show multiple plow marks align with Heinrich Event 3 (H3), ~31,000 years ago. Numerical glacial iceberg simulations indicate that the transport of icebergs to these sites occurs during massive, but short-lived, periods of elevated meltwater discharge. Transport of icebergs to the subtropics, away from deep water formation sites, may explain why H3 was associated with only a modest increase in ice-rafting across the subpolar North Atlantic, and implies a complex relationship between freshwater forcing and climate change. Stratigraphy from subbottom data across the scour marks shows there are additional features that are both older and younger, and may align with other periods of elevated meltwater discharge.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
Iván Parras-Berrocal ◽  
Alfredo Izquierdo ◽  
Dmitry Sein ◽  
William Cabos

Abstract. The Tyrrhenian Sea plays an important role in the winter deep water formation in the North Western Mediterranean through the water that enters the Ligurian Sea via the Corsica Channel. Therefore, the study of the impact of the changes in the future climate on the Tyrrhenian circulation and its consequences represents an important issue. Furthermore, the seasonally-dependent, rich in dynamical mesoscale structures, Tyrrhenian circulation is dominated by the interplay of local climate and the basin-wide Mediterranean circulation via the water transport across its major straits and an adequate representation of its features represents an important modeling challenge. In this work we examine with a regionally-coupled atmosphere-ocean model the changes in the Tyrrhenian circulation by the end of the 21st century under the RCP8.5 emission scenario, their driving mechanisms, as well as their possible impact on winter convection in the NW Mediterranean. Our model successfully reproduces the main features of the Mediterranean Sea and Tyrrhenian basin present-day circulation. We find that toward the end of the century the winter cyclonic, along-slope stream around the Tyrrhenian basin becomes weaker. This weakening increases the wind work transferred to the mesoscale structures, which become more intense than at present in winter and summer. We also find that, in the future, the northward water transport across the Corsica Channel towards the Liguro-Provençal basin becomes smaller than today. Also, water that flows through this channel presents a stronger stratification because of a generalized warming with a saltening of intermediate waters. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions by the end of the century.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. Li ◽  
M. S. Lozier ◽  
S. Bacon ◽  
A. S. Bower ◽  
S. A. Cunningham ◽  
...  

AbstractChanges in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.


2021 ◽  
Vol 17 (2) ◽  
pp. 615-632
Author(s):  
Frerk Pöppelmeier ◽  
Jeemijn Scheen ◽  
Aurich Jeltsch-Thömmes ◽  
Thomas F. Stocker

Abstract. The response of the Atlantic Meridional Overturning Circulation (AMOC) to freshwater perturbations critically depends on its mean state. Large swaths of icebergs melting in the North Atlantic during the last deglaciation constituted such perturbations and can, thus, provide important constraints on the stability of the AMOC. However, the mean AMOC state during the Last Glacial Maximum (LGM), preceding the rapid disintegration of the ice sheets during the deglaciation, as well as its response to these perturbations remain debated. Here, we investigate the evolution of the AMOC as it responds to freshwater perturbations under improved LGM boundary conditions in the Bern3D intermediate complexity model. Particularly, we consider the effect of an open versus a closed Bering Strait and the effect of increased tidal dissipation as a result of the altered bathymetry due to the lower glacial sea level stand. The vigorous and deep AMOC under these glacial boundary conditions, consistent with previous simulations with different models, reacts more strongly to North Atlantic freshwater forcings than under preindustrial conditions. This increased sensitivity is mostly related to the closed Bering Strait that cuts off the freshwater escape route through the Arctic into the Pacific, thereby facilitating faster accumulation of freshwater in the North Atlantic and halting deep-water formation. Proxy reconstructions of the LGM AMOC instead indicate a weaker and possibly shallower AMOC than today, which is in conflict with the particularly strong and deep circulation states coherently simulated with ocean circulation models for the LGM. Simulations with reduced North Atlantic deep-water formation, as a consequence of potentially increased continental runoff from ice sheet melt and imposed changes in the hydrological cycle, more closely resemble the overturning circulation inferred from proxies. These circulation states also show bistable behavior, where the AMOC does not recover after North Atlantic freshwater hosing. However, no AMOC states are found here that either comprise an extreme shoaling or vigorous and concurrent shallow overturning as previously proposed based on paleoceanographic data.


2021 ◽  
Author(s):  
Sourav Chatterjee ◽  
Roshin P Raj ◽  
Laurent Bertino ◽  
Nuncio Murukesh

<p>Enhanced intrusion of warm and saline Atlantic Water (AW) to the Arctic Ocean (AO) in recent years has drawn wide interest of the scientific community owing to its potential role in ‘Arctic Amplification’. Not only the AW has warmed over the last few decades , but its transfer efficiency have also undergone significant modifications due to changes in atmosphere and ocean dynamics at regional to large scales. The Nordic Seas (NS), in this regard, play a vital role as the major exchange of polar and sub-polar waters takes place in this region. Further, the AW and its significant modification on its way to AO via the Nordic Seas has large scale implications on e.g., deep water formation, air-sea heat fluxes. Previous studies have suggested that a change in the sub-polar gyre dynamics in the North Atlantic controls the AW anomalies that enter the NS and eventually end up in the AO. However, the role of NS dynamics in resulting in the modifications of these AW anomalies are not well studied. Here in this study, we show that the Nordic Seas are not only a passive conduit of AW anomalies but the ocean circulations in the Nordic Seas, particularly the Greenland Sea Gyre (GSG) circulation can significantly change the AW characteristics between the entry and exit point of AW in the NS. Further, it is shown that the change in GSG circulation can modify the AW heat distribution in the Nordic Seas and can potentially influence the sea ice concentration therein. Projected enhanced atmospheric forcing in the NS in a warming Arctic scenario and the warming trend of the AW can amplify the role of NS circulation in AW propagation and its impact on sea ice, freshwater budget and deep water formation.</p>


Sign in / Sign up

Export Citation Format

Share Document