Generalised charged anisotropic quark star models

Pramana ◽  
2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Abdulrahim T Abdalla ◽  
Jefta M Sunzu ◽  
Jason M Mkenyeleye
Keyword(s):  
2016 ◽  
Vol 65 (5) ◽  
pp. 575-584 ◽  
Author(s):  
M. Azam ◽  
S.A. Mardan ◽  
M.A. Rehman
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 161
Author(s):  
Muhammad Sharif ◽  
Amal Majid

This work aims to extend two isotropic solutions to the anisotropic domain by decoupling the field equations in self-interacting Brans–Dicke theory. The extended solutions are obtained by incorporating an additional source in the isotropic fluid distribution. We deform the radial metric potential to disintegrate the system of field equations into two sets such that each set corresponds to only one source (either isotropic or additional). The system related to the anisotropic source is solved by employing the MIT bag model as an equation of state. Further, we develop two isotropic solutions by plugging well-behaved radial metric potentials in Karmarkar’s embedding condition. The junction conditions at the surface of the star are imposed to specify the unknown constants appearing in the solution. We examine different physical characteristics of the constructed quark star models by using the mass and radius of PSR J1903+327. It is concluded that, in the presence of a massive scalar field, both stellar structures are well-behaved, viable and stable for smaller values of the decoupling parameter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark Hermes ◽  
Mitul Luhar

AbstractIntertidal sea stars often function in environments with extreme hydrodynamic loads that can compromise their ability to remain attached to surfaces. While behavioral responses such as burrowing into sand or sheltering in rock crevices can help minimize hydrodynamic loads, previous work shows that sea stars also alter body shape in response to flow conditions. This morphological plasticity suggests that sea star body shape may play an important hydrodynamic role. In this study, we measured the fluid forces acting on surface-mounted sea star and spherical dome models in water channel tests. All sea star models created downforce, i.e., the fluid pushed the body towards the surface. In contrast, the spherical dome generated lift. We also used Particle Image Velocimetry (PIV) to measure the midplane flow field around the models. Control volume analyses based on the PIV data show that downforce arises because the sea star bodies serve as ramps that divert fluid away from the surface. These observations are further rationalized using force predictions and flow visualizations from numerical simulations. The discovery of downforce generation could explain why sea stars are shaped as they are: the pentaradial geometry aids attachment to surfaces in the presence of high hydrodynamic loads.


2021 ◽  
Vol 126 (16) ◽  
Author(s):  
I. Bombaci ◽  
A. Drago ◽  
D. Logoteta ◽  
G. Pagliara ◽  
I. Vidaña

2019 ◽  
Vol 19 (6) ◽  
pp. 078
Author(s):  
Alireza Peivand ◽  
Kazem Naficy ◽  
Gholam Hossein Bordbar

Author(s):  
Z Keszthelyi ◽  
G Meynet ◽  
F Martins ◽  
A de Koter ◽  
A David-Uraz

Abstract τ Sco, a well-studied magnetic B-type star in the Uτer Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configuration which is unusual for a magnetic massive star. We employ the cmfgen radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ mesa and genec stellar evolution models accounting for the effects of surface magnetic fields. To reconcile τ Sco’s properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for τ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain τ Sco’s simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of τ Sco.


2013 ◽  
Vol 44 (11) ◽  
pp. 2389
Author(s):  
M. Pieńkos

2010 ◽  
Vol 29 (8) ◽  
pp. 728-750 ◽  
Author(s):  
Isolina Alberto ◽  
Asunción Beamonte ◽  
Pilar Gargallo ◽  
Pedro M. Mateo ◽  
Manuel Salvador

Sign in / Sign up

Export Citation Format

Share Document