scholarly journals Sea stars generate downforce to stay attached to surfaces

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark Hermes ◽  
Mitul Luhar

AbstractIntertidal sea stars often function in environments with extreme hydrodynamic loads that can compromise their ability to remain attached to surfaces. While behavioral responses such as burrowing into sand or sheltering in rock crevices can help minimize hydrodynamic loads, previous work shows that sea stars also alter body shape in response to flow conditions. This morphological plasticity suggests that sea star body shape may play an important hydrodynamic role. In this study, we measured the fluid forces acting on surface-mounted sea star and spherical dome models in water channel tests. All sea star models created downforce, i.e., the fluid pushed the body towards the surface. In contrast, the spherical dome generated lift. We also used Particle Image Velocimetry (PIV) to measure the midplane flow field around the models. Control volume analyses based on the PIV data show that downforce arises because the sea star bodies serve as ramps that divert fluid away from the surface. These observations are further rationalized using force predictions and flow visualizations from numerical simulations. The discovery of downforce generation could explain why sea stars are shaped as they are: the pentaradial geometry aids attachment to surfaces in the presence of high hydrodynamic loads.

2016 ◽  
Vol 97 (6) ◽  
pp. 1267-1272
Author(s):  
Roberto Carlos Cerda ◽  
María Luján Flores ◽  
Hector Eliseo Zaixso ◽  
Osvaldo León Córdoba

The sea star Anasterias minuta broods the embryos in the oral region; embryos then block the mouth and prevent the parent from taking up nutrients during the brooding period. Here, we analysed content of carbohydrates in different organs as well as in eggs, embryos and juveniles of A. minuta. We found that these biochemical components are used mainly by the pyloric caeca and the body wall as reserve substances to endure the periods of reduced consumption rates of non-brooding females and males and the long-term starvation of brooding females. The ability to translocate carbohydrates from females to embryos and juveniles observed in other species of sea stars was not confirmed.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190700 ◽  
Author(s):  
Sina Heydari ◽  
Amy Johnson ◽  
Olaf Ellers ◽  
Matthew J. McHenry ◽  
Eva Kanso

The oral surface of sea stars is lined with arrays of tube feet that enable them to achieve highly controlled locomotion on various terrains. The activity of the tube feet is orchestrated by a nervous system that is distributed throughout the body without a central brain. How such a distributed nervous system produces a coordinated locomotion is yet to be understood. We develop mathematical models of the biomechanics of the tube feet and the sea star body. In the model, the feet are coupled mechanically through their structural connection to a rigid body. We formulate hierarchical control laws that capture salient features of the sea star nervous system. Namely, at the tube foot level, the power and recovery strokes follow a state-dependent feedback controller. At the system level, a directionality command is communicated through the nervous system to all tube feet. We study the locomotion gaits afforded by this hierarchical control model. We find that these minimally coupled tube feet coordinate to generate robust forward locomotion, reminiscent of the crawling motion of sea stars, on various terrains and for heterogeneous tube feet parameters and initial conditions. Our model also predicts a transition from crawling to bouncing consistently with recent experiments. We conclude by commenting on the implications of these findings for understanding the neuromechanics of sea stars and their potential application to autonomous robotic systems.


2020 ◽  
Author(s):  
Jaimie Krems ◽  
Steven L. Neuberg

Heavier bodies—particularly female bodies—are stigmatized. Such fat stigma is pervasive, painful to experience, and may even facilitate weight gain, thereby perpetuating the obesity-stigma cycle. Leveraging research on functionally distinct forms of fat (deposited on different parts of the body), we propose that body shape plays an important but largely underappreciated role in fat stigma, above and beyond fat amount. Across three samples varying in participant ethnicity (White and Black Americans) and nation (U.S., India), patterns of fat stigma reveal that, as hypothesized, participants differently stigmatized equally-overweight or -obese female targets as a function of target shape, sometimes even more strongly stigmatizing targets with less rather than more body mass. Such findings suggest value in updating our understanding of fat stigma to include body shape and in querying a predominating, but often implicit, theoretical assumption that people simply view all fat as bad (and more fat as worse).


Author(s):  
Johan Roenby ◽  
Hassan Aref

The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos.


Author(s):  
Peter J. Cooper ◽  
Melanie J. Taylor ◽  
Zafra Cooper ◽  
Christopher G. Fairbum

Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


1988 ◽  
Vol 24 (4) ◽  
pp. 528-528
Author(s):  
W J M Gerver ◽  
N M Drayer ◽  
W Schaafsma ◽  
N M Drayer
Keyword(s):  

2009 ◽  
Vol 9 (3) ◽  
pp. 331-338 ◽  
Author(s):  
Maria Aparecida Conti ◽  
Táki Athanássios Cordás ◽  
Maria do Rosário Dias de Oliveira Latorre

OBJECTIVES: to produce evidence of the validity and reliability of the Body Shape Questionnaire (BSQ) - a tool for measuring an individual's attitude towards his or her body image. METHODS: the study covered 386 young people of both sexes aged between 10 and 18 from a private school and used self-applied questionnaires and anthropometric evaluation. It evaluated the internal consistency, the discriminant validity for differences from the means, according to nutritional status (underweight, eutrophic, overweight and obese), the concurrent validity by way of Spearman's correlation coefficient between the scale and the Body Mass Index (BMI), the waist-hip circumference ratio (WHR) and the waist circumference (WC). Reliability was tested using Wilcoxon's Test, the intraclass correlation coefficient and the Bland-Altman figures. RESULTS: the BSQ displayed good internal consistency (±=0.96) and was capable of discriminating among the total population, boys and girls, according to nutritional status (p<0.001). It correlated with the BMI (r=0.41; p<0.001), WHR (r=-0.10; p=0.043) and WC (r=0.24; p<0.001) and its reliability was confirmed by intraclass correlation (r=0.91; p<0.001) for the total population. The questionnaire was easy to understand and could be completed quickly. CONCLUSIONS: the BSQ presented good results, thereby providing evidence of its validity and reliability. It is therefore recommended for evaluation of body image attitudes among adolescents.


Author(s):  
Karen S. Young ◽  
K. Han Kim ◽  
Sudhakar Rajulu

Objective This study aims to identify the change in anthropometric measurements during spaceflight due to microgravity exposure. Background Comprehensive and accurate anthropometric measurements are crucial to assess body shape and size changes in microgravity. However, only limited anthropometric data have been available from the astronauts in spaceflight. Methods A new photogrammetry-based technique in combination with a tape-measure method was used for anthropometric measurements from nine crewmembers on the International Space Station. Measurements included circumference and height for body segments (chest, waist, bicep, thigh, calf). The time-dependent variations were also assessed across pre-, in-, and postflight conditions. Results Stature showed a biphasic change with up to 3% increase at the early flight phase, followed by a steady phase during the remaining flight. Postflight measurements returned to a similar level of the preflight. Other linear measurements, including acromion height, showed similar trends. The chest, hip, thigh, and calf circumferences show overall decrease during the flight up to 11%, then returned close to the preflight measurement at postflight. Conclusion The measurements from this study provide critical information for the spacesuit and hardware design. The ground-based assessments for spacesuit fit needs to be revalidated and adjusted for in-flight extravehicular activities from this data. Application These data can be useful for space suit design as well as habitat, vehicle, and additional microgravity activities such as exercise, where the body shape changes can affect fit, performance, and human factors of the overall design.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Pyo Lee ◽  
Yun Jung Lee ◽  
So Min Lee ◽  
Jung Joo Yoon ◽  
Hye Yoom Kim ◽  
...  

Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na+in the blood increases. The rhizome ofAtractylodes macrocephalahas been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract fromA. macrocephalarhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document