scholarly journals Ramification theory and formal orbifolds in arbitrary dimension

2019 ◽  
Vol 129 (3) ◽  
Author(s):  
Manish Kumar
1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


Author(s):  
Lie Fu ◽  
Robert Laterveer ◽  
Charles Vial

AbstractGiven a smooth projective variety, a Chow–Künneth decomposition is called multiplicative if it is compatible with the intersection product. Following works of Beauville and Voisin, Shen and Vial conjectured that hyper-Kähler varieties admit a multiplicative Chow–Künneth decomposition. In this paper, based on the mysterious link between Fano varieties with cohomology of K3 type and hyper-Kähler varieties, we ask whether Fano varieties with cohomology of K3 type also admit a multiplicative Chow–Künneth decomposition, and provide evidence by establishing their existence for cubic fourfolds and Küchle fourfolds of type c7. The main input in the cubic hypersurface case is the Franchetta property for the square of the Fano variety of lines; this was established in our earlier work in the fourfold case and is generalized here to arbitrary dimension. On the other end of the spectrum, we also give evidence that varieties with ample canonical class and with cohomology of K3 type might admit a multiplicative Chow–Künneth decomposition, by establishing this for two families of Todorov surfaces.


2020 ◽  
Vol 8 (1) ◽  
pp. 45-69
Author(s):  
Eckhard Liebscher ◽  
Wolf-Dieter Richter

AbstractWe prove and describe in great detail a general method for constructing a wide range of multivariate probability density functions. We introduce probabilistic models for a large variety of clouds of multivariate data points. In the present paper, the focus is on star-shaped distributions of an arbitrary dimension, where in case of spherical distributions dependence is modeled by a non-Gaussian density generating function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


2014 ◽  
Vol 50 (3) ◽  
pp. 261-285 ◽  
Author(s):  
Jean Cousty ◽  
Gilles Bertrand ◽  
Michel Couprie ◽  
Laurent Najman
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Antonio J. Calderón Martín

AbstractLet {({\mathfrak{H}},\mu,\alpha)} be a regular Hom-algebra of arbitrary dimension and over an arbitrary base field {{\mathbb{F}}}. A basis {{\mathcal{B}}=\{e_{i}\}_{i\in I}} of {{\mathfrak{H}}} is called multiplicative if for any {i,j\in I}, we have that {\mu(e_{i},e_{j})\in{\mathbb{F}}e_{k}} and {\alpha(e_{i})\in{\mathbb{F}}e_{p}} for some {k,p\in I}. We show that if {{\mathfrak{H}}} admits a multiplicative basis, then it decomposes as the direct sum {{\mathfrak{H}}=\bigoplus_{r}{{\mathfrak{I}}}_{r}} of well-described ideals admitting each one a multiplicative basis. Also, the minimality of {{\mathfrak{H}}} is characterized in terms of the multiplicative basis and it is shown that, in case {{\mathcal{B}}}, in addition, it is a basis of division, then the above direct sum is composed by means of the family of its minimal ideals, each one admitting a multiplicative basis of division.


Sign in / Sign up

Export Citation Format

Share Document