half filling
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 45)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Boris Ponsioen ◽  
Fakher Assaad ◽  
Philippe Corboz

The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite projected entangled-pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Federico Finkel ◽  
Artemio González-López

Abstract We introduce a family of inhomogeneous XX spin chains whose squared couplings are a polynomial of degree at most four in the site index. We show how to obtain an asymptotic approximation for the Rényi entanglement entropy of all such chains in a constant magnetic field at half filling by exploiting their connection with the conformal field theory of a massless Dirac fermion in a suitably curved static background. We study the above approximation for three particular chains in the family, two of them related to well-known quasi-exactly solvable quantum models on the line and the third one to classical Krawtchouk polynomials, finding an excellent agreement with the exact value obtained numerically when the Rényi parameter α is less than one. When α ≥ 1 we find parity oscillations, as expected from the homogeneous case, and show that they are very accurately reproduced by a modification of the Fagotti-Calabrese formula. We have also analyzed the asymptotic behavior of the Rényi entanglement entropy in the non-standard situation of arbitrary filling and/or inhomogeneous magnetic field. Our numerical results show that in this case a block of spins at each end of the chain becomes disentangled from the rest. Moreover, the asymptotic approximation for the case of half filling and constant magnetic field, when suitably rescaled to the region of non-vanishing entropy, provides a rough approximation to the entanglement entropy also in this general case.


Author(s):  
Rui Han ◽  
Feng Yuan ◽  
Huaisong Zhao

Abstract The dynamic structure factors reflecting the excitation spectra were investigated in a one-dimensional (1D) optical lattice with a spin-orbit coupling (SOC) effect. The results reveal that the single-particle excitations of both the density and spin dynamical structure factors are strongly reconstructed and split owing to the SOC effect, and a hat-like excitation band appears in the high-binding-energy region. The hat-like excitation band of the density dynamical structure factor exhibits an arc form, and has a pocket in the spin dynamical structure factor. In particular, only a gapless single-particle excitation point is left for both the density dynamical structure factor and spin dynamical structure factor when the SOC strength reaches a critical point at half-filling. A stronger SOC strength causes the gapless excitation points to disappear, which indicates that metal-insulator transition occurs. The metal-insulator transition only appears in half-filling and lightly doped regimes.


2021 ◽  
Author(s):  
Bhaskar Ghawri ◽  
Phanibhusan Mahapatra ◽  
Manjari Garg ◽  
Shinjan Mandal ◽  
Saisab Bhowmik ◽  
...  

Abstract The planar assembly of twisted bilayer graphene (tBLG) hosts a multitude of interaction-driven phases when the relative rotation is close to the magic angle (θ = 1.1°). This includes correlation-induced ground states that reveal spontaneous symmetry breaking at low temperature, as well as the possibility of non-Fermi liquid (NFL) excitations. However, experimentally, the manifestation of NFL effects in transport properties of twisted bilayer graphene remains ambiguous. Here we report simultaneous measurements of electrical resistivity (ρ) and thermoelectric power (S) in tBLG for several twist angles between θ ≈ 1.0°-1.7°. We observe an emergent violation of the semiclassical Mott relation in the form of excess S close to half-filling for θ≈1.6° that vanishes for ≥ 2°. The excess S (≈2 μV/K at low temperatures T ≈10 K at θ≈1.6°) persists up to ≈ 40 K and is accompanied by metallic T-linear ρ with transport scattering rate (1/τ) of near-Planckian magnitude 1/τ ≈ k_BT/h_bar. Closer to θ_m, the excess S was also observed for fractional band-filling (ν≈ 0.5). The combination of non-trivial electrical transport and violation of Mott relation provides compelling evidence of NFL physics intrinsic to tBLG.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debika Debnath ◽  
M. Zahid Malik ◽  
Ashok Chatterjee

AbstractThe nature of phase transition from an antiferromagnetic SDW polaronic Mott insulator to the paramagnetic bipolaronic CDW Peierls insulator is studied for the half-filled Holstein-Hubbard model in one dimension in the presence of Gaussian phonon anharmonicity. A number of unitary transformations performed in succession on the Hamiltonian followed by a general many-phonon averaging leads to an effective electronic Hamiltonian which is then treated exactly by using the Bethe-Ansatz technique of Lieb and Wu to determine the energy of the ground state of the system. Next using the Mott–Hubbard metallicity condition, local spin-moment calculation, and the concept of quantum entanglement entropy and double occupancy, it is shown that in a plane spanned by the electron–phonon coupling coefficient and onsite Coulomb correlation energy, there exists a window in which the SDW and CDW phases are separated by an intermediate phase that is metallic.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Canxun Zhang ◽  
Tiancong Zhu ◽  
Salman Kahn ◽  
Shaowei Li ◽  
Birui Yang ◽  
...  

AbstractThe discovery of interaction-driven insulating and superconducting phases in moiré van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies have focused on twisted bilayer graphene, correlated insulating states and a superconductivity-like transition up to 12 K have been reported in recent transport measurements of twisted double bilayer graphene. Here we present a scanning tunneling microscopy and spectroscopy study of gate-tunable twisted double bilayer graphene devices. We observe splitting of the van Hove singularity peak by ~20 meV at half-filling of the conduction flat band, with a corresponding reduction of the local density of states at the Fermi level. By mapping the tunneling differential conductance we show that this correlated system exhibits energetically split states that are spatially delocalized throughout the different regions in the moiré unit cell, inconsistent with order originating solely from onsite Coulomb repulsion within strongly-localized orbitals. We have performed self-consistent Hartree-Fock calculations that suggest exchange-driven spontaneous symmetry breaking in the degenerate conduction flat band is the origin of the observed correlated state. Our results provide new insight into the nature of electron-electron interactions in twisted double bilayer graphene and related moiré systems.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Anwesha Chattopadhyay ◽  
H R krishnamurthy ◽  
Arti Garg

We present a novel route for attaining unconventional superconductivity in a strongly correlated system without doping. In a simple model of a correlated band insulator at half-filling we demonstrate, based on a generalization of the projected wavefunctions method, that superconductivity emerges for a broad range of model parameters when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, the superconducting phase appears sandwiched between the correlated band insulator followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic half-metal, and Mott insulator phases on the other side.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Roman Rausch ◽  
Cassian Plorin ◽  
Matthias Peschke

We solve the quantum-mechanical antiferromagnetic Heisenberg model with spins positioned on vertices of the truncated icosahedron using the density-matrix renormalization group (DMRG). This describes magnetic properties of the undoped C_{60}60 fullerene at half filling in the limit of strong on-site interaction UU. We calculate the ground state and correlation functions for all possible distances, the lowest singlet and triplet excited states, as well as thermodynamic properties, namely the specific heat and spin susceptibility. We find that unlike smaller C_{20}20 or C_{32}32 that are solvable by exact diagonalization, the lowest excited state is a triplet rather than a singlet, indicating a reduced frustration due to the presence of many hexagon faces and the separation of the pentagonal faces, similar to what is found for the truncated tetrahedron. This implies that frustration may be tuneable within the fullerenes by changing their size. The spin-spin correlations are much stronger along the hexagon bonds and exponentially decrease with distance, so that the molecule is large enough not to be correlated across its whole extent. The specific heat shows a high-temperature peak and a low-temperature shoulder reminiscent of the kagomé lattice, while the spin susceptibility shows a single broad peak and is very close to the one of C_{20}20.


2021 ◽  
Author(s):  
Abhay Pasupathy ◽  
Augusto Ghiotto ◽  
En-Min Shih ◽  
Giancarlo Pereira ◽  
Daniel Rhodes ◽  
...  

Abstract In moiré heterostructures, gate-tunable insulating phases driven by electronic correlations have been recently discovered. Here, we use transport measurements to characterize the gate-driven metal-insulator transitions and the metallic phase in twisted WSe2 near half filling of the first moiré subband. We find that the metal-insulator transition as a function of both density and displacement field is continuous. At the metal-insulator boundary, the resistivity displays strange metal behaviour at low temperature with dissipation comparable to the Planckian limit. Further into the metallic phase, Fermi-liquid behaviour is recovered at low temperature which evolves into a quantum critical fan at intermediate temperatures before eventually reaching an anomalous saturated regime near room temperature. An analysis of the residual resistivity indicates the presence of strong quantum fluctuations in the insulating phase. These results establish twisted WSe2 as a new platform to study doping and bandwidth controlled metal-insulator quantum phase transitions on the triangular lattice.


Sign in / Sign up

Export Citation Format

Share Document