Influence of Stimulus Temperature on Orosensory Perception and Variation with Taste Phenotype

2012 ◽  
Vol 5 (3-4) ◽  
pp. 243-265 ◽  
Author(s):  
Martha R. Bajec ◽  
Gary J. Pickering ◽  
Nancy DeCourville
2021 ◽  
pp. 113552
Author(s):  
Nancy K. Dess ◽  
Alexis T. Funaki ◽  
Benjamin G. Fanson ◽  
Rhea Bhatia ◽  
Clinton D. Chapman

2017 ◽  
Vol 8 (3) ◽  
pp. 1116-1123 ◽  
Author(s):  
Emma Louise Beckett ◽  
Konsta Duesing ◽  
Lyndell Boyd ◽  
Zoe Yates ◽  
Martin Veysey ◽  
...  

Sex-specific interactions between bitter taste phenotype, TAS2R38 genotype and alcohol intake may explain variance is previous studies, and may have implications for disease risk.


1984 ◽  
Vol 51 (2) ◽  
pp. 325-339 ◽  
Author(s):  
H. E. Torebjork ◽  
R. H. LaMotte ◽  
C. J. Robinson

The peripheral neuronal correlates of heat pain elicited from normal skin and from skin made hyperalgesic following a mild heat injury were studied by simultaneously recording, in humans, evoked responses in C mechanoheat (CMH) nociceptors and the magnitude estimations of pain obtained from the same subjects. Subjects made continuous magnitude ratings of pain elicited by short-duration stimuli of 39-51 degrees C delivered to the hairy skin of the calf or foot before and at varying intervals of time after a heat injury induced by a conditioning stimulus (CS) of 50 degrees C, 100 s or 48 degrees C, 360 s. The stimuli were applied with a thermode pressed against the nociceptor's receptive field. For heat stimulations of normal skin, that is, uninjured skin, pain thresholds in 14 experiments with nine subjects ranged from 41 to 49 degrees C, whereas response thresholds for most of the 14 CMH nociceptors were 41 degrees C (in two cases, 43 degrees C). The latter suggested that spatial summation of input from many nociceptors was necessary at pain threshold. An intensity-response function was obtained for each CMH by relating the total number of nerve impulses evoked per stimulus to stimulus temperature. A corresponding magnitude scaling function for pain was obtained by relating the maximum rating of pain elicited by each stimulus to stimulus temperature. The relation between the subject's scaling function and the intensity-response function of his CMH nociceptor varied somewhat from one experiment to the next, regardless of whether the results were obtained from the same or from different subjects. However, when averages were computed for all 14 tests, there was a near linear relationship between the mean number of impulses elicited in the CMHs and the median ratings of pain, over the range of 45-51 degrees C. It was concluded that the magnitude of heat pain sensation was more closely related to the magnitude of response in a population of CMH nociceptors than in any individual nociceptor. At 0.5 min after the CS, the pain thresholds of most subjects were elevated, and the magnitude ratings of pain elicited by supra-threshold stimuli were lower than pre-CS values (hypoalgesia). Corresponding changes were seen in the increased thresholds and decreased responses (fatigue) of most CMHs. By 5-10 min after the CS, the pain thresholds of most subjects were lower, and their magnitude ratings of suprathreshold stimuli were greater than pre-CS values (hyperalgesia).(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 41 (2) ◽  
pp. 509-528 ◽  
Author(s):  
R. H. LaMotte ◽  
J. N. Campbell

1. Radiant-heat stimuli of different intensities were delivered every 28 s to the thenar eminence of the hand of human subjects and to the receptive fields (RFs) of 58 "mechanothermal nociceptive" and 16 "warm" C-fibers, most of which innervated the glabrous skin of the monkey hand. A CO2 infrared laser under control via a radiometer provided a step increase in skin temperature to a level maintained within +/- 0.1 degrees C over a 7.5-mm-diameter spot. 2. Human subjects categorized the magnitude of warmth and pain sensations evoked by stimuli that ranged in temperature from 40 to 50 degrees C. The scale of subjective thermal intensity constructed from these category estimates showed a monotonically increasing relation between stimulus temperature and the magnitude of warmth and pain sensations. 3. The mechanothermal fibers had a mean RF size of 18.9 +/- 3.2 mm2 (SE), a mean conduction velocity of 0.8 +/- 0.1 m/s, mean thresholds of 43.6 +/- 0.6 degrees C for radiant heat and 5.95 +/- 0.59 bars for mechanical stimulation, and no spontaneous activity. In contrast, warm fibers had punctate RFs, a mean conduction velocity of 1.1 +/- 0.1 m/s, heat thresholds of less than 1 degrees C above skin temperature, no response to mechanical stimulation, and a resting level of activity in warm skin that was suppressed by cooling. 4. The cumulative number of impulses evoked during each stimulation in the nociceptive afferents increased monotonically as a function of stimulus temperature over the range described by humans as increasingly painful (45-50 degrees C). Nociceptive fibers showed little or no response to stimulus temperatures less than 45 degrees C that elicited in humans sensations primarily of warmth but not pain. In contrast, the cumulative impulse count during stimulation of each warm fiber increased monotonically with stimulus temperature over the range of 39-43 degrees C. However, for stimuli of 41-49 degrees C the cumulative impulse count in warm fibers was nonmonotonic with stimulus temperature. Warm-fiber response to stimuli of 45 degrees C or greater usually consisted of a short burst of impulses followed by cessation of activity. 5. The subjective magnitude of warmth and pain sensations in humans and the cumulative impulse count evoked by each stimulus in warm and nociceptive afferents varied inversely with the number, delivery rate, and intensity of preceding stimulations. 6. The results of these experiments suggest the following: a) that activity in the mechanothermal nociceptive C-fibers signals the occurrence of pain evoked by radiant heat, and that the frequency of discharge in these fibers may encode the intensity of painful stimulation; b) that activity in warm fibers may encode the intensity of warmth at lower stimulus temperatures, but is unlikely to provide a peripheral mechanism for encoding the intensity of painful stimulation at higher stimulus temperatures.


2020 ◽  
Vol 45 (7) ◽  
pp. 563-572
Author(s):  
Kristen E Kay ◽  
Laura E Martin ◽  
Kimberly F James ◽  
Sashel M Haygood ◽  
Ann-Marie Torregrossa

Abstract Increasing evidence suggests that stimulus temperature modifies taste signaling. However, understanding how temperature modifies taste-driven behavior is difficult to separate as we must first understand how temperature alone modifies behavior. Previous work has suggested that cold water is more rewarding and “satiating” than warm water, and water above orolingual temperature is avoided in brief-access testing. We explored the strength of cold water preference and warm water avoidance by asking: (1) if cold temperature alone was sufficient to condition a flavor preference and (2) if avoidance of warm stimuli is driven by novelty. We addressed these questions using custom-designed equipment that allows us to monitor and maintain solution temperatures. We conducted two-bottle preference tests, after pairing Kool-Aid flavors with 10 or 40 °C. Rats preferred the flavor paired with cold temperature, both while it was cold and for 1 day while solutions were presented at 22 °C. We then examined the role of novelty in avoidance of 40 °C. Rats were maintained on 10, 22, or 40 °C water in their home cage to increase familiarity with the temperatures. Rats were then subject to a series of brief-access taste tests to water or sucrose at 10 to 40 °C. Rats that had 40 °C experience licked more to 40 °C water, but not sucrose, during brief-access testing. In a series of two-bottle preference tests, rats maintained on 40 °C water had a decreased preference for 10 °C water when paired opposite 40 °C water. Together, these data contribute to our understanding of orosensory-driven behavior with water at different temperatures.


2016 ◽  
Vol 6 (8) ◽  
pp. 783-791 ◽  
Author(s):  
Nithin D. Adappa ◽  
Carl M. Truesdale ◽  
Alan D. Workman ◽  
Laurel Doghramji ◽  
Corrine Mansfield ◽  
...  

2014 ◽  
Vol 17 (9) ◽  
pp. 1149-1155 ◽  
Author(s):  
Karen Ahijevych ◽  
Beverly J. Tepper ◽  
Margaret C. Graham ◽  
Christopher Holloman ◽  
William A. Matcham

2014 ◽  
Vol 1 ◽  
pp. 13-14
Author(s):  
E.L. Beckett ◽  
M. Veysey ◽  
X. Ng ◽  
L. Boyd ◽  
S. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document