Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation

Author(s):  
Chun Lu ◽  
Guanzhen Sun ◽  
Yanmin Zhang
2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Li Zu ◽  
Daqing Jiang ◽  
Fuquan Jiang

We consider a predator-prey model in which the preys disperse amongnpatches (n≥2) with stochastic perturbation. We show that there is a unique positive solution and find out the sufficient conditions for the extinction to the system with any given positive initial value. In addition, we investigate that there exists a stationary distribution for the system and it has ergodic property. Finally, we illustrate the dynamic behavior of the system withn=2via numerical simulation.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
Chunyan Ji ◽  
Daqing Jiang ◽  
Hong Liu ◽  
Qingshan Yang

We discuss a two-species Lotka-Volterra mutualism system with stochastic perturbation. We show that there is a unique nonnegative solution of this system. Furthermore, we investigate that there exists a stationary distribution for this system, and it has ergodic property.


2011 ◽  
Vol 04 (02) ◽  
pp. 349-358 ◽  
Author(s):  
Junyuan Yang ◽  
Xiaoyan Wang ◽  
Xuezhi Li

In this paper, we investigate the dynamic behavior of an HIV model with stochastic perturbation. Firstly, in ODE model, the disease-free equilibrium E0 is globally asymptotically stable if the basic reproductive number R0 < 1. When R0 > 1, the endemic equilibrium E* is globally asymptotically stable. Secondly, the criterion for robustness of the system is established under stochastic perturbations. The conditions of stochastic stability of the endemic equilibrium E* are obtained. Finally, we simulate our analytical results.


Author(s):  
Eric N'zi ◽  
Modeste N'zi

In this paper, we include stochastic perturbation into SIRS epidemic model incorporating media coverage and study their dynamics. Our model is obtained by taking into account both for demographic stochasticity and environmental fluctuations on contact rate before alert media β1. First, we show that the model is biologically well-posed by proving the global existence, positivity and boundedness of solution . Then, sufficient conditions for the extinction of infectious diseaseis proved. We also established sufficient conditions for the existence of an ergodic stationary distribution to the model. Finally, the theoretical results are illustrated by numerical simulations; in addition we show that the media coverage can reduce the peak of infective individuals via numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document