Effect of Site Conditions on Site Amplification Factors and Seismic Design Spectra for Bridges

2017 ◽  
Vol 22 (7) ◽  
pp. 2441-2450
Author(s):  
Muhammad Tariq A. Chaudhary
Author(s):  
Muhammad Tariq A. Chaudhary

Seismic site amplification factors and seismic design spectra for bridges are influenced by site conditions that include geotechnical properties of soil strata as well as the geological setting. All modern seismic design codes recognize this fact and assign design spectral shapes based on site conditions or specify a 2-parameter model with site amplification factors as a function of site class, seismic intensity and vibration period (short and long). Design codes made a number of assumptions related to the site conditions while specifying the values of short (Fa) and long period (Fv) site amplification factors. Making these assumptions was necessary due to vast variation in site properties and limited availability of actual strong motion records on all site conditions and seismic setting in a region. This paper conducted a sensitivity analysis for site amplification factors for site classes C and D in the AASHTO bridge design code by performing a 1-D site response analysis in which values of site parameters like strata depth, travel-time averaged shear wave velocity in the top 30 m strata (Vs30), plasticity index (PI), impedance contrast ratio (ICR) and intensity of seismic ground motion were varied. The results were analyzed to identify the site parameters that impacted Fa and Fv values for site classes C and D. The computed Fa and Fv values were compared with the corresponding values in the AASHTO bridge design code and it was found that the code-based Fa and Fv values were generally underestimated and overestimated respectively.


2021 ◽  
Vol 11 (2) ◽  
pp. 6873-6881
Author(s):  
T. Nagao

Since an Earthquake Ground Motion (EGM) is amplified from the propagation through the ground, different models are required for each ground type in the seismic design of structures. While the shallow subsurface indicators are used for the classification of ground types, a deep subsurface has a significant impact on the amplification of the EGMs. This study discusses the maximum credible EGMs for seismic design reflecting seismic amplification due to deep subsurface. The design spectra, reflecting the site amplification factor of the target location, are presented by the calculation of the EGMs with the same source and path characteristics and different site amplification factors as recent major Japanese earthquake records have shown, from the perspective of establishing the maximum credible EGMs that may occur in the future at a target site. The present design spectra, which are based on the natural period of a shallow subsurface, are compared with those based on the site amplification factors, considering the effect of deep subsurfaces. Although there are almost no differences in the design spectra with the present design methods according to the surface ground type, the proposed method provides significantly different design spectra for each site amplification factor.


2003 ◽  
Vol 30 (2) ◽  
pp. 272-278 ◽  
Author(s):  
W.D Liam Finn ◽  
Adrian Wightman

Foundation factors are used in seismic codes to capture the amplification effects of local soil conditions on ground motions and, hence, on seismic design forces. Recent developments in categorizing site conditions for seismic codes and assigning intensity- and frequency-dependent amplification factors to the various site classes are presented to provide a basis for understanding the new foundation factors proposed for the 2005 edition of the National Building Code of Canada.Key words: design spectra, site characterization, amplification factors.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


Sign in / Sign up

Export Citation Format

Share Document