Optimization of a rectangular profile annular fin based on fixed fin height

2009 ◽  
Vol 23 (11) ◽  
pp. 3124-3131 ◽  
Author(s):  
Hyung-Suk Kang
2018 ◽  
Vol 35 (3) ◽  
pp. 1444-1459
Author(s):  
Sen-Yung Lee ◽  
Li-Kuo Chou ◽  
Chao Kuang Chen

PurposeThe purpose of this paper is to propose the Laplace Adomian Decomposition Method (LADM) for studying the nonlinear temperature and thermal stress analysis of annular fins with time-dependent boundary condition.Design/methodology/approachThe nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root is studied by the LADM. The radiation effect is considered. The convective heat transfer coefficient is considered as a temperature function.FindingsThe proposed solution method is helpful in overcoming the computational bottleneck commonly encountered in industry and in academia. The results show that the circumferential stress at the root of the fin will be important in the fatigue analysis.Originality/valueThis study presents an effective solution method to analyze the nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root by using LADM.


2021 ◽  
Vol 16 ◽  
pp. 106-114
Author(s):  
Antonio Campo

The objective of the present paper is to develop a simple algebraic computational procedure for the estimation of the average convection coefficient of a forced fluid flow over an annular fin of rectangular profile within the platform of inverse heat conduction problems. The data required is the tip temperatures of an annular fin of rectangular profile, which are measured in an experimental setup. Based on nonlinear regression analysis, an empirical correlation equation is constructed for the dimensionless average tip temperature depending upon the dimensionless thermo–geometrical parameter and the radius ratio. When compared against the outcome of a direct heat conduction problem, the good quality of the estimated average convection coefficient for the annular fin of rectangular profile demonstrates the feasibility of the simple algebraic computational procedure.


2003 ◽  
Vol 36 (5) ◽  
pp. 1214-1224
Author(s):  
L. D. Cussen

The recent development of neutron collimators with rectangular transmission profiles (intensityversusangular divergence) extends hope of improved count rates on neutron scattering instruments. It is usually assumed that a more effective use of beam angular spread in these devices should increase count rates by about a factor of two. However, real beams have both angular and wavevector spread and both these spreads are governed by the allowed collimation. In this extended view, the gains from ideal rectangular-profile elements (angle filters) are shown to be much larger (about a factor of four). The mirror reflections used to achieve the rectangular profiles in real devices complicate the resolution effects. Specifically, the reflections disturb the wavevector–angular divergence correlation in the beams, leading to unusual peak shapes characterized by triple peaks on powder diffractometers. Thus, these reflecting collimators are likely to be universally useful only before the monochromator and immediately preceding the detector, where wavevector–angle correlations have no effect. This reduces the potential gains to a factor of two or so. Note that the gains are as previously expected but for quite different reasons than imagined. This remains a very significant gain in a field where most work is intensity-limited.


Sign in / Sign up

Export Citation Format

Share Document