annular fin
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 16 ◽  
pp. 106-114
Author(s):  
Antonio Campo

The objective of the present paper is to develop a simple algebraic computational procedure for the estimation of the average convection coefficient of a forced fluid flow over an annular fin of rectangular profile within the platform of inverse heat conduction problems. The data required is the tip temperatures of an annular fin of rectangular profile, which are measured in an experimental setup. Based on nonlinear regression analysis, an empirical correlation equation is constructed for the dimensionless average tip temperature depending upon the dimensionless thermo–geometrical parameter and the radius ratio. When compared against the outcome of a direct heat conduction problem, the good quality of the estimated average convection coefficient for the annular fin of rectangular profile demonstrates the feasibility of the simple algebraic computational procedure.


One method of increasing the heat transfer rate of the fins is by adding slits to the fins. The purpose of this study was to analyze the heat transfer rate by adding slits in the annular fins with a vertical cylinder under natural convection conditions. The vertical cylinder length, cylinder diameter, fin diameter, and distance between the fins are 313 mm, 25 mm, 125 mm, and 7 mm, respectively. The number of slits varied from 2 slits and 4 slits and the spacing of the slits was kept constant by 5 mm. This research was conducted with a simulation method using Autodesk CFD 2019 software. As a result, fins with slits and fins without slits were compared. The value of the heat transfer rate that occurs and the heat transfer coefficient in the annular fin with slits is better than the fin without slits. The highest heat transfer rates were 142.928 W and 2.6022 W/m 2K for an annular fin with 2 slits


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 844
Author(s):  
Cheng-Hung Huang ◽  
Yun-Lung Chung

Heat exchangers with annular finned-tube type and partially wetted condition are utilized widely in engineering systems, such as air-conditioning systems and refrigeration systems. In addition, the physical properties of fin materials should be considered as functions of temperature in reality and thus become a non-linear problem. Based on the above two conditions, an optimal partially wet annular fin design problem, with temperature-dependent thermal properties of the fin, to yield optimal fin efficiency was investigated in the present work, which has not been examined previously and it is the novelty of this study. An iterative regularization algorithm using the conjugate gradient method (CGM) is considered as the optimization tool based on the desired fin efficiency under a fixed fin volume constraint. The partially wet annular fin condition can result if the relative humidity of surrounding air is between 80 and 90%. Finally, the optimal fin shape, with the highest computed efficiency among examined fins under identical operational conditions, can be obtained. It is found that when the Biot numbers for ambient air (Bia) and relative humidity (φ) increased, the optimum computed fin efficiency and interfacial radius between wet and dry fin domains (rwd) will be increased, and the estimated optimum fin shape also changed. However, the shape of optimal fin remained approximately unchanged when the Biot numbers for the inner tube (Bii), the thermal conductivities of the tube (kw) and fin (kf) varied. It reveals that Bii, kw and kf have an insignificant influence on the optimal shape of the annular fin in a partially wet condition.


2021 ◽  
pp. 315-315
Author(s):  
Gökhan Aksoy

The thermal analysis of the annular fin is performed by applying the differential transformation method. The thermal conductivity of the annular fin has been considered as a function of temperature. The effects of non-dimensional parameters, namely thermal conductivity and thermo-geometric fin parameters on the fin efficiency and temperature distribution are determined. Obtained results from the differential transformation method are also compared with the exact analytical results and the results of the finite difference method in the constant thermal conductivity condition. It has been concluded that the differential transformation method provides accurate results in the solution of nonlinear problems.


Sign in / Sign up

Export Citation Format

Share Document