Nonlinear temperature and thermal stress analysis of annular fins with time dependent boundary condition

2018 ◽  
Vol 35 (3) ◽  
pp. 1444-1459
Author(s):  
Sen-Yung Lee ◽  
Li-Kuo Chou ◽  
Chao Kuang Chen

PurposeThe purpose of this paper is to propose the Laplace Adomian Decomposition Method (LADM) for studying the nonlinear temperature and thermal stress analysis of annular fins with time-dependent boundary condition.Design/methodology/approachThe nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root is studied by the LADM. The radiation effect is considered. The convective heat transfer coefficient is considered as a temperature function.FindingsThe proposed solution method is helpful in overcoming the computational bottleneck commonly encountered in industry and in academia. The results show that the circumferential stress at the root of the fin will be important in the fatigue analysis.Originality/valueThis study presents an effective solution method to analyze the nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root by using LADM.

2017 ◽  
Vol 14 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Onur Arslan

Purpose Frictional sliding contact problems between laterally graded orthotropic half-planes and a flat rigid stamp are investigated. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members. Design/methodology/approach The solution procedure is based on a finite element (FE) approach which is conducted with an efficient FE analysis software ANSYS. The spatial gradations of the orthotropic stiffness constants through the horizontal axis are enabled utilizing the homogeneous FE approach. The Augmented Lagrangian contact algorithm is used as an iterative non-linear solution method in the contact analysis. Findings The accuracy of the proposed FE solution method is approved by using the comparisons of the results with those computed using an analytical technique. The prominent results indicate that the surface contact stresses can be mitigated upon increasing the degree of orthotropy and positive lateral gradations. Originality/value One can infer from the literature survey that, the contact mechanics analysis of orthotropic laterally graded materials has not been investigated so far. In this study, an FE method-based computational solution procedure for the aforementioned problem is addressed. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members. Additionally, this study provides some useful points related to computational contact mechanics analysis of orthotropic structures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming-Xian Lin ◽  
Chia-Hsiang Tseng ◽  
Chao Kuang Chen

PurposeThis paper presents the problems using Laplace Adomian decomposition method (LADM) for investigating the deformation and nonlinear behavior of the large deflection problems on Euler-Bernoulli beam.Design/methodology/approachThe governing equations will be converted to characteristic equations based on the LADM. The validity of the LADM has been confirmed by comparing the numerical results to different methods.FindingsThe results of the LADM are found to be better than the results of Adomian decomposition method (ADM), due to this method's rapid convergence and accuracy to obtain the solutions by using fewer iterative terms. LADM are presented for two examples for large deflection problems. The results obtained from example 1 shows the effects of the loading, horizontal parameters and moment parameters. Example 2 demonstrates the point loading and point angle influence on the Euler-Bernoulli beam.Originality/valueThe results of the LADM are found to be better than the results of ADM, due to this method's rapid convergence and accuracy to obtain the solutions by using fewer iterative terms.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Behzad ◽  
Benjamin Herrmann ◽  
Williams R. Calderón-Muñoz ◽  
José M. Cardemil ◽  
Rodrigo Barraza

Purpose Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress. Design/methodology/approach The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events. Findings The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions. Originality/value Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Rabbani ◽  
Soroush Aghamohamadi Bosjin ◽  
Neda Manavizadeh ◽  
Hamed Farrokhi-Asl

Purpose This paper aims to present a novel bi-objective mathematical model for a production-inventory system under uncertainty. Design/methodology/approach This paper addresses agile and lean manufacturing concepts alongside with green production methods to design an integrated capacitated lot sizing problem (CLSP). From a methodological perspective, the problem is solved in three phases. In the first step, an FM/M/C queuing system is used to minimize the number of customers waited to receive their orders. In the second step, an effective approach is applied to deal with the fuzzy bi-objective model and finally, a hybrid metaheuristic algorithm is used to solve the problem. Findings Some numerical test problems and sensitivity analyzes are conducted to measure the efficiency of the proposed model and the solution method. The results validate the model and the performance of the solution method compared to Gams results in small size test problems and prove the superiority of the hybrid algorithm in comparison with the other well-known metaheuristic algorithms in large size test problems. Originality/value This paper presents a novel bi-objective mathematical model for a CLSP under uncertainty. The proposed model is conducted on a practical case and several sensitivity analysis are conducted to assess the behavior of the model. Using a queue system, this problem aims to reduce the items waited in the queue to receive service. Two objective functions are considered to maximize the profit and minimize the negative environmental effects. In this regard, the second objective function aims to reduce the amount of emitted carbon.


2017 ◽  
Vol 27 (9) ◽  
pp. 2105-2114
Author(s):  
Xiaoying Zhao ◽  
Yanren Hou ◽  
Guangzhi Du

Purpose The purpose of this paper is to propose a parallel partition of unity method to solve the time-dependent Stokes problems. Design/methodology/approach This paper solved the time-dependent Stokes equations using the finite element method and the partition of unity method. Findings The proposed method in this paper obtained the same accuracy as the standard Galerkin method, but it, in general, saves time. Originality/value Based on a combination of the partition of unity method and the finite element method, the authors, in this paper, propose a new parallel partition of unity method to solve the unsteady Stokes equations. The idea is that, at each time step, one need to only solve a series of independent local sub-problems in parallel instead of one global problem. Numerical tests show that the proposed method not only reaches the same convergence orders as the fully discrete standard Galerkin method but also saves ample computing time.


2012 ◽  
Vol 56 (11) ◽  
pp. 5986-5989 ◽  
Author(s):  
Manoj Kumar ◽  
Tarun Mathur ◽  
Tarani K. Barman ◽  
G. Ramkumar ◽  
Ashish Bhati ◽  
...  

ABSTRACTThe MIC90of RBx 14255, a novel ketolide, againstClostridium difficilewas 4 μg/ml (MIC range, 0.125 to 8 μg/ml), and this drug was found to be more potent than comparator drugs. Anin vitrotime-kill kinetics study of RBx 14255 showed time-dependent bacterial killing forC. difficile. Furthermore, in the hamster model ofC. difficileinfection, RBx 14255 demonstrated greater efficacy than metronidazole and vancomycin, making it a promising candidate forC. difficiletreatment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ram Jiwari ◽  
Alf Gerisch

Purpose This paper aims to develop a meshfree algorithm based on local radial basis functions (RBFs) combined with the differential quadrature (DQ) method to provide numerical approximations of the solutions of time-dependent, nonlinear and spatially one-dimensional reaction-diffusion systems and to capture their evolving patterns. The combination of local RBFs and the DQ method is applied to discretize the system in space; implicit multistep methods are subsequently used to discretize in time. Design/methodology/approach In a method of lines setting, a meshless method for their discretization in space is proposed. This discretization is based on a DQ approach, and RBFs are used as test functions. A local approach is followed where only selected RBFs feature in the computation of a particular DQ weight. Findings The proposed method is applied on four reaction-diffusion models: Huxley’s equation, a linear reaction-diffusion system, the Gray–Scott model and the two-dimensional Brusselator model. The method captured the various patterns of the models similar to available in literature. The method shows second order of convergence in space variables and works reliably and efficiently for the problems. Originality/value The originality lies in the following facts: A meshless method is proposed for reaction-diffusion models based on local RBFs; the proposed scheme is able to capture patterns of the models for big time T; the scheme has second order of convergence in both time and space variables and Nuemann boundary conditions are easy to implement in this scheme.


Author(s):  
Ying Xie ◽  
Ze Wang ◽  
Xueting Shan ◽  
Yangyang Li

Purpose Thermal stress of the rotor in a squirrel cage induction motor is generated due to the temperature rise, and the structure of the rotor will be destroyed if the stress acted on the rotor exceeds its limits, so the thermal stress is also one of the main causes led to broken bar fault. The purpose of this paper is to report the thermal stress coupled analysis for the induction motor with healthy and faulty rotor, and to find the variation tendency of the temperature and thermal stress due to broken bars, and the part most likely to break in the rotor as a result of the thermal stress load are identified. Design/methodology/approach The steady temperature and thermal stress of the rotor in the case of the healthy and faulty conditions are calculated by finite element method, and the 3D model of the motor used in the experiments is established and the experimental results are presented for both healthy and faulty machines. Findings The influence of the broken bars fault on the motor thermal profile and thermal stress can be found, and it explains why the breaking point always appears in the joint of the bars and end rings. Originality/value The paper presents the 3D thermal stress coupled model and performance characteristics of induction motor with broken bars. The reasonable constraint is established according to the contact of components each other, and more reasonable fracture location is selected. The results obtained by the simulation model are in a good agreement with practical situation, because the effect of skewed rotor were taken into consideration in the process of simulation.


Sign in / Sign up

Export Citation Format

Share Document