Scan profiles for neutron spectrometers. II. Rectangular-profile elements by acceptance-diagram methods

2003 ◽  
Vol 36 (5) ◽  
pp. 1214-1224
Author(s):  
L. D. Cussen

The recent development of neutron collimators with rectangular transmission profiles (intensityversusangular divergence) extends hope of improved count rates on neutron scattering instruments. It is usually assumed that a more effective use of beam angular spread in these devices should increase count rates by about a factor of two. However, real beams have both angular and wavevector spread and both these spreads are governed by the allowed collimation. In this extended view, the gains from ideal rectangular-profile elements (angle filters) are shown to be much larger (about a factor of four). The mirror reflections used to achieve the rectangular profiles in real devices complicate the resolution effects. Specifically, the reflections disturb the wavevector–angular divergence correlation in the beams, leading to unusual peak shapes characterized by triple peaks on powder diffractometers. Thus, these reflecting collimators are likely to be universally useful only before the monochromator and immediately preceding the detector, where wavevector–angle correlations have no effect. This reduces the potential gains to a factor of two or so. Note that the gains are as previously expected but for quite different reasons than imagined. This remains a very significant gain in a field where most work is intensity-limited.

2003 ◽  
Vol 36 (5) ◽  
pp. 1204-1213 ◽  
Author(s):  
L. D. Cussen

`Acceptance diagrams' are a powerful graphical method of describing beam characteristics on neutron scattering instruments. Recent examples of the technique have used hypothetical rectangular-profile beam elements, not the conventional Gaussian profiles, to clarify the description. This article develops the method for Gaussian-profile beam elements and shows that it gives identical results to accepted techniques. Direct expressions are presented for scan profiles, their widths and intensities for both powder diffractometers and three-axis spectrometers. This work gives some necessary background and therefore forms the first part of a discussion of the resolution effects of the new reflecting Soller collimators for neutrons.


Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


Author(s):  
T. Egami ◽  
H. D. Rosenfeld ◽  
S. Teslic

Relaxor ferroelectrics, such as Pb(Mg1/3Nb2/3)O3 (PMN) or (Pb·88La ·12)(Zr·65Ti·35)O3 (PLZT), show diffuse ferroelectric transition which depends upon frequency of the a.c. field. In spite of their wide use in various applications details of their atomic structure and the mechanism of relaxor ferroelectric transition are not sufficiently understood. While their crystallographic structure is cubic perovskite, ABO3, their thermal factors (apparent amplitude of thermal vibration) is quite large, suggesting local displacive disorder due to heterovalent ion mixing. Electron microscopy suggests nano-scale structural as well as chemical inhomogeneity.We have studied the atomic structure of these solids by pulsed neutron scattering using the atomic pair-distribution analysis. The measurements were made at the Intense Pulsed Neutron Source (IPNS) of Argonne National Laboratory. Pulsed neutrons are produced by a pulsed proton beam accelerated to 750 MeV hitting a uranium target at a rate of 30 Hz. Even after moderation by a liquid methane moderator high flux of epithermal neutrons with energies ranging up to few eV’s remain.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document