Predicting the ratcheting strain of 304 stainless steel by considering yield surface distortion and using a viscoplastic model

2015 ◽  
Vol 29 (7) ◽  
pp. 2857-2862 ◽  
Author(s):  
Nabi Ahmadi ◽  
Ali Nayebi
Author(s):  
H Rokhgireh ◽  
A Nayebi

Correct determination of ratcheting strain is very important in cyclic loading. A new simple yield surface distortion model is presented and its effect on cyclic loading and ratcheting prediction is investigated in this research. Model of Baltov and Sawczuk was modified in order to be able to consider directional distortion of the yield surface. Movement of the yield surface center is modeled by Chaboche's nonlinear kinematic hardening model. Isotropic hardening was also considered. A triangular function is used and necessary cyclic plasticity relations are developed. Convexity of the proposed model is discussed and verified. Performance of the proposed model in ratcheting strain prediction is investigated in multiaxial non proportional loadings under different paths. Experimental results with stress, strain and combined stress-strain control paths are compared with the proposed model results. Incorporation of the yield surface distortion of this new model, predicts better ratcheting strain for different stress, strain and stress-strain paths.


1984 ◽  
Vol 52 (1-2) ◽  
pp. 15-40 ◽  
Author(s):  
D. W. A. Rees

2002 ◽  
Vol 124 (4) ◽  
pp. 402-411 ◽  
Author(s):  
Ludovic Vincent ◽  
Sylvain Calloch ◽  
Tadeusz Kurtyka ◽  
Didier Marquis

Many theoretical studies have been made to describe multiaxial ratchetting and most of them have been concentrated on the location of the yield domain, not on its shape. In this paper, we introduce nonlinear kinematic constitutive equations consistent with ratchetting modeling into the distortional model of subsequent yield surfaces proposed by Kurtyka, T., and Zyczkowski, M. We use an efficient polycrystalline model to simulate complex tests including yield surface detections in order to get some reference predictions to use in the development of the constitutive laws introduced into the distortional model. The distortional model is thus qualitatively identified with the polycrystalline model and then quantitatively identified with the experimental results on a type 316L stainless steel. It gives promising results.


1981 ◽  
Vol 48 (2) ◽  
pp. 276-284 ◽  
Author(s):  
M. A. Eisenberg ◽  
C.-F. Yen

A theory of anisotropic viscoplasticity is developed. It is compared with and shown to reduce to existing theories under appropriate restrictions. The theory accommodates anisotropic hardening laws which, by means of Lagrangian mappings in stress space, incorporate experimentally observed yield surface distortion as well as kinematic and isotropic flow-induced changes. The theory is applied to the prediction of flow surfaces in tension-torsion space.


Author(s):  
A. Nayebi ◽  
H. Rokhgireh

In the present study Baltov and Sawczuk’s yield surface model is modified to represent compatible results with experimental observations. The proposed yield surface is determined during tension-torsion loading by considering kinematic hardening model and monotonic loading paths. The experimental results represent the nosed and flattened region in the loading and reverse loading direction respectively. The nosed region is dominant in tension than in torsion. The cross-effect is negligible in the small plastic strain amount. The Baltov and Sawczuk’s yield surface has nosed and flattened regions in both loading and reversed loading directions for negative and positive added material parameter respectively. Thus the elliptic Baltov and Sawczuk’s yield surface is modified by changing the sign of this parameter continuously from loading to reverse loading direction and the needed relations of the new model are obtained. The new model was able to predict properly the shape of yield surface. The experimental results compare well with the new model yield surface distortion predictions.


2016 ◽  
Vol 26 (7) ◽  
pp. 1061-1079 ◽  
Author(s):  
Zhenming Yue ◽  
Houssem Badreddine ◽  
Khemais Saanouni ◽  
Xincun Zhuang ◽  
Jun Gao

This paper deals with the numerical simulation of sheet metal blanking process based on fully coupled elastoplastic model accounting for the induced anisotropies due to the kinematic hardening and the yield surface distortion. The yield surface distortion is assumed to be controlled by the kinematic hardening leading additional extra hardening which enhances the predictive capabilities of the model. Series of finite element-based numerical simulations of blanking process with four kinds of assumed distortional hardening parameters have been conducted. Through the comparison between the experimentally observed responses and the numerically predicted ones with and without the yield surface distortion effect, the significance of the yield surface distortion-induced anisotropy on the estimation of the blanking edge quality has been investigated.


Sign in / Sign up

Export Citation Format

Share Document