A New Model to Describe Yield Surface Distortion Based on the Baltov and Sawczuk’s Model

Author(s):  
A. Nayebi ◽  
H. Rokhgireh

In the present study Baltov and Sawczuk’s yield surface model is modified to represent compatible results with experimental observations. The proposed yield surface is determined during tension-torsion loading by considering kinematic hardening model and monotonic loading paths. The experimental results represent the nosed and flattened region in the loading and reverse loading direction respectively. The nosed region is dominant in tension than in torsion. The cross-effect is negligible in the small plastic strain amount. The Baltov and Sawczuk’s yield surface has nosed and flattened regions in both loading and reversed loading directions for negative and positive added material parameter respectively. Thus the elliptic Baltov and Sawczuk’s yield surface is modified by changing the sign of this parameter continuously from loading to reverse loading direction and the needed relations of the new model are obtained. The new model was able to predict properly the shape of yield surface. The experimental results compare well with the new model yield surface distortion predictions.

2016 ◽  
Vol 26 (7) ◽  
pp. 1061-1079 ◽  
Author(s):  
Zhenming Yue ◽  
Houssem Badreddine ◽  
Khemais Saanouni ◽  
Xincun Zhuang ◽  
Jun Gao

This paper deals with the numerical simulation of sheet metal blanking process based on fully coupled elastoplastic model accounting for the induced anisotropies due to the kinematic hardening and the yield surface distortion. The yield surface distortion is assumed to be controlled by the kinematic hardening leading additional extra hardening which enhances the predictive capabilities of the model. Series of finite element-based numerical simulations of blanking process with four kinds of assumed distortional hardening parameters have been conducted. Through the comparison between the experimentally observed responses and the numerically predicted ones with and without the yield surface distortion effect, the significance of the yield surface distortion-induced anisotropy on the estimation of the blanking edge quality has been investigated.


2015 ◽  
Vol 784 ◽  
pp. 11-18 ◽  
Author(s):  
Ali Nayebi ◽  
Hojjatollah Rokhgireh

In this paper, yield surface distortion was studied by considering the combination of nonlinear kinematic hardening model of Chaboche and a new anisotropic continuum damage evolution model. The constitutive relations for anisotropic damage of elastoplasic materials were developed based on irreversible thermodynamics. The internal state manifold which consists of internal variables to specify the thermodynamic state of solids was described by a 2nd rank symmetric damage tensor, the kinematic hardening tensor and tensor of movement of damage potential surface. In order to describe the damage state, the fictitious continuum domain was considered and the consistent relations between real and fictitious domains were developed. It was indicated that the combination of the Chaboche’s model and model of anisotropic continuum damage leads to the well description of the subsequent yield surface.


1981 ◽  
Vol 48 (2) ◽  
pp. 276-284 ◽  
Author(s):  
M. A. Eisenberg ◽  
C.-F. Yen

A theory of anisotropic viscoplasticity is developed. It is compared with and shown to reduce to existing theories under appropriate restrictions. The theory accommodates anisotropic hardening laws which, by means of Lagrangian mappings in stress space, incorporate experimentally observed yield surface distortion as well as kinematic and isotropic flow-induced changes. The theory is applied to the prediction of flow surfaces in tension-torsion space.


Author(s):  
K. S. Choi ◽  
J. Pan

In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model is derived. The evolution equation for the active yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function. As a special case, detailed incremental constitutive relations are derived for the Mises yield function. The closed-form solutions for one-dimensional stress-plastic strain curves are also derived and plotted for the Mises materials under cyclic loading conditions. The stress-plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. A user material subroutine based on the Mises yield function, the anisotropic hardening rule and the constitutive relations was then written and implemented into ABAQUS. Computations were conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule and the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress-strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress-strain data for the nonlinear kinematic hardening rule.


Sign in / Sign up

Export Citation Format

Share Document