Relatively nonexpansive mappings in Kohlenbach hyperbolic spaces

Author(s):  
Taoufik sabar
2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Mei Yuan ◽  
Xi Li ◽  
Xue-song Li ◽  
John J. Liu

Relatively nonexpansive mappings and equilibrium problems are considered based on a shrinking projection method. Using properties of the generalizedf-projection operator, a strong convergence theorem for relatively nonexpansive mappings and equilibrium problems is proved in Banach spaces under some suitable conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Moosa Gabeleh ◽  
Naseer Shahzad

LetAandBbe two nonempty subsets of a Banach spaceX. A mappingT:A∪B→A∪Bis said to be cyclic relatively nonexpansive ifT(A)⊆BandT(B)⊆AandTx-Ty≤x-yfor all (x,y)∈A×B. In this paper, we introduce a geometric notion of seminormal structure on a nonempty, bounded, closed, and convex pair of subsets of a Banach spaceX. It is shown that if (A,B) is a nonempty, weakly compact, and convex pair and (A,B) has seminormal structure, then a cyclic relatively nonexpansive mappingT:A∪B→A∪Bhas a fixed point. We also discuss stability of fixed points by using the geometric notion of seminormal structure. In the last section, we discuss sufficient conditions which ensure the existence of best proximity points for cyclic contractive type mappings.Erratum to “Seminormal Structure and Fixed Points of Cyclic Relatively Nonexpansive Mappings”


Sign in / Sign up

Export Citation Format

Share Document