Temporal Variability of Dark Carbon Fixation and Bacterial Production and Their Relation with Environmental Factors in a Tropical Estuarine System

2017 ◽  
Vol 41 (4) ◽  
pp. 1089-1101
Author(s):  
Camila N. Signori ◽  
Jean L. Valentin ◽  
Ricardo C. G. Pollery ◽  
Alex Enrich-Prast
2013 ◽  
Vol 11 (6) ◽  
pp. 298-303
Author(s):  
Ana Lucia Santoro ◽  
David Bastviken ◽  
Lars Tranvik ◽  
Alex Enrich-Prast

Author(s):  
Francesco Di Nezio ◽  
Clarisse Beney ◽  
Samuele Roman ◽  
Francesco Danza ◽  
Antoine Buetti-Dinh ◽  
...  

Abstract Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community, and exibiting different phenotypes: 1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, 2) the small-celled PSB Thiodictyon syntrophicum, and 3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.


Oceanologia ◽  
2021 ◽  
Author(s):  
Arunpandi Nagarathinam ◽  
Jyothibabu Retnamma ◽  
Jagadeesan Loganathan ◽  
Parthasarathi Singaram ◽  
Savitha Mohanan ◽  
...  

2021 ◽  
Vol 43 ◽  
pp. 101659
Author(s):  
Nayana Buarque A. Silva ◽  
Manuel Flores-Montes ◽  
Marcella Guennes ◽  
Gislayne Borges ◽  
Carlos Noriega ◽  
...  

2019 ◽  
Vol 144 ◽  
pp. 16-21
Author(s):  
Ayaz Ahmed ◽  
Hema Naik ◽  
Sarvesh S. Adel ◽  
Pratirupa Bardhan ◽  
Mangesh Gauns ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jhostin Ramos ◽  
Marco Boto ◽  
Juan Felipe Blanco-Libreros ◽  
José M. Riascos

Periwinkles (Littorinidae: genus Littoraria) are one of the very few molluscan clades showing an adaptive radiation closely associated to the mangrove habitat. However, pervasive land use changes associated to urbanization is prompting mangrove loss or degradation, with unknown consequences for mangrove-associated fauna. In the southern Colombian Caribbean, mangrove ecosystems have been encroached by human settlements and different populations of Littoraria angulifera (Lamarck, 1822) now inhabit anthropogenic intertidal substrates in urban areas, but the demographic traits of populations thriving in these novel environments are unknown. We studied the relative abundance and size structure of L. angulifera in remnant mangrove patches, woody debris and anthropogenic substrates (boulder seawalls and built structures) in 13 locations throughout the Urabá Gulf, a human-transformed tropical estuarine system. The abundance of L. angulifera was up to two orders of magnitude higher in anthropogenic than in quasi-natural or natural substrates. Snails also displayed a significant preference for wave protected positions in boulder seawalls and built structures exposed to heavy wave action, which was not previously reported in mangrove forests. Moreover, snail populations in anthropogenic substrate were consistently dominated by individuals of small sizes in comparison with mangroves or driftwood. We argue that the anthropogenic disturbances caused by the expansion of Turbo city during nearly one century in a coast formerly dominated by mangrove forests are providing novel and expanding habitats, whose quality might be good enough as to support high-density populations of L. angulifera. However, we hypothesize that shifted thermal regimes in hard and novel wave-exposed urban seascapes might also be prompting behavioral adjustments and the selection of smaller size ranges than those observed in mangrove forests.


2021 ◽  
Author(s):  
Joseph H. Vineis ◽  
Ashley N. Bulseco ◽  
Jennifer L. Bowen

Anthropogenic nitrate amendment to coastal marine sediments can increase rates of heterotrophic mineralization and autotrophic dark carbon fixation (DCF). DCF may be favored in sediments where organic matter is biologically unavailable, leading to a microbial community supported by chemoautotrophy. Niche partitioning among DCF communities and adaptations for nitrate metabolism in coastal marine sediments remain poorly characterized, especially within salt marshes. We used genome-resolved metagenomics, phylogenetics, and comparative genomics to characterize the potential niche space, phylogenetic relationships, and adaptations important to microbial communities within nitrate enriched sediment. We found that nitrate enrichment of sediment from discrete depths between 0-25 cm supported both heterotrophs and chemoautotrophs that use sulfur oxidizing denitrification to drive the Calvin-Benson-Bassham (CBB) or reductive TCA (rTCA) DCF pathways. Phylogenetic reconstruction indicated that the nitrate enriched community represented a small fraction of the phylogenetic diversity contained in coastal marine environmental genomes, while pangenomics revealed close evolutionary and functional relationships with DCF microbes in other oligotrophic environments. These results indicate that DCF can support coastal marine microbial communities and should be carefully considered when estimating the impact of nitrate on carbon cycling in these critical habitats.


Sign in / Sign up

Export Citation Format

Share Document